6.

2002 91

The equation of the parabola in the above diagram is

$$y = (x-1)^2 - 16.$$

- (a) State the coordinates of the minimum turning point of the parabola.
- (b) State the equation of the axis of symmetry of the parabola.
- (c) The parabola cuts the x-axis at A and B. Find the length of AB.

67

(b) Hence write down the roots of the equation

2003

$$7+6x-x^2=0.$$

(c) The graph of $y = 7 + 6x - x^2$ is shown in the diagram.

Quadratic functions

Int 2 PP 2001 -2008

2004 91

5. William Watson's Fast Foods use a logo based on parts of three identical parabolas.

This logo is represented on the diagram below.

The first parabola has turning point P and equation $y = (x + 2)^2 - 16$.

(a) State the coordinates of P.

2

Marks

(b) If R is the point (2, 0), find the coordinates of Q, the minimum turning point of the second parabola.

1

(c) Find the equation of the parabola with turning point S.

The diagram below shows part of the graph of $y = 36 - (x - 2)^2$.

Marks

(a) State the coordinates of the maximum turning point.

(b) State the equation of the axis of symmetry.

1

2

The line y = 20 is drawn. It cuts the graph of $y = 36 - (x - 2)^2$ at R and S as shown below.

(c) S is the point (6, 20). Find the coordinates of R.

Quadratic functions

Int 2 PP 2001 -2008

2006 91

The equation of the parabola in the above diagram is

$$y = (x - 3)^2 - 4.$$

- (a) State the coordinates of the minimum turning point of the parabola.
- (b) State the equation of the axis of symmetry of the parabola.
- (c) A is the point (1, 0). State the coordinates of B.

2006 82

11. A cuboid is shown below.

It has length (x + 5) metres, breadth x metres, height 1 metre and volume 24 cubic metres.

(a) Show that

$$x^2 + 5x - 24 = 0.$$

(b) Using the equation in part (a), find the breadth of the cuboid.

2

- G
- 7. The graph shown below is part of the parabola with equation $y = 8x x^2$.

(a) By factorising $8x - x^2$, find the roots of the equation

$$8x - x^2 = 0.$$

2

(b) State the equation of the axis of symmetry of the parabola.

1

(c) Find the coordinates of the turning point.

2

. The graph below shows part of a parabola with equation of the form

$$y = (x+a)^2 + b.$$

(a) State the values of a and b.

2

(b) State the equation of the axis of symmetry of the parabola.

1

(c) The line PQ is parallel to the x-axis.

Find the coordinates of points P and Q.