Q1. (a) Find an equivalent expression for $\operatorname{Sin}(x+90)^{0}$
(b) Hence find the exact value of $\operatorname{Sin} 135^{\circ}$

Q2. Given that $\operatorname{Sin} A=\frac{5}{13}$ and $\operatorname{Cos} B=\frac{4}{5}$ where $A$ and $B$ are acute angles. Express $\operatorname{Sin}(A+B)$ in the form $\frac{a}{b}$

Q3. Prove that $\operatorname{Cos}(A+B) \operatorname{Cos} B+\operatorname{Sin}(A+B) \operatorname{Sin} B=\operatorname{Cos} A$

Q4. Using the triangles opposite, Show that $\operatorname{Sin}(a-b)=\frac{2 \sqrt{2}-2}{3 \sqrt{5}}$


Q5. Find the value of $\operatorname{Cos} 80^{\circ} \operatorname{Cos} 40^{\circ}-\operatorname{Sin} 80^{\circ} \operatorname{Sin} 40^{\circ}$

Q6. Solve the equation $\operatorname{Cos} 2 x^{0}-3 \operatorname{Cos} x^{0}+2=0$ for $0 \leq x \leq 360$

Q7.
(a) Using the fact that $\frac{7 \pi}{12}=\frac{\pi}{3}+\frac{\pi}{4}$, find the exact value of $\sin \left(\frac{7 \pi}{12}\right)$.
(b) Show that $\sin (A+B)+\sin (A-B)=2 \sin A \cos B$.
(c) (i) Express $\frac{\pi}{12}$ in terms of $\frac{\pi}{3}$ and $\frac{\pi}{4}$.
(ii) Hence or otherwise find the exact value of $\sin \left(\frac{7 \pi}{12}\right)+\sin \left(\frac{\pi}{12}\right)$.

