```
Advanced Higher Maths with Miss Deely
Monday Period 5 and Wednesday Period }
TopicS: 1. Binomial Theorem
2. Partial Fractions.
3. Complex Numbers
4. Systems of Equations: Gaussian Elimination & Matrix Operations.
5. Sequences and Series.
6. Summation Formulae and Proof by Induction
    7. Vectors.
    8. Disproving conjectures by counter-examples.
    9. Indirect or direct proofs.
```


Eactoria Notation

A product of all natural numbers less than or equal to n can be written as $n!$ where '!' means factorial.

For example:

$$
6!=6 \times 5 \times 4 \times 3 \times 2 \times 1
$$

In general, $n!=n \times(n-1) \times(n-2) \ldots(n-(n-1))$ for $n \quad N$

We can also say that $n \times(n-1)!=n!$ because $7 \times 6!=7$!

Note that $1!=1$ and that $0!=1$.
This is beacuse $1 \times 0!=1!$

Reminder of Sets and Notation

N - Natural numbers	means 'therefore'
W - Whole Numbers	
Z - Integers	means 'this implies'
Q - Rational Numbers	₹ means 'approximately equal to ${ }^{\prime}$
R - Real Numbers	'.' can be used instead of x for multiplication.
' \in ' means an element of	Σ means the sum of
' ' means not an element	

Factorial Notation

Work out the value of the following:
(i) 5 !
$=120$
(iv) $\frac{5!}{3!}=$
$\frac{5 \times 4 \times 3 \times 2 \times T}{3 \times 2 x}$
(ii) 8 !
$=40320$
(v) $\frac{8!}{6!}=8 \times 7=56$
(iii) $20 \times 19!=20$!
$2.43 . . \times 10^{18}$

Permutations
So there are $n!$ ways of ordering n objects.
We can then look at O! again. How many ways are there of ordering an empty set?
$\}=1$ way, therefore $O!=1$

Factorial Notation is used in probability to calculate the number of
Factorial Notation is used in probability to calculate the number of known as permutations.
Q. Think about the letters A and B. How many ways can you order them? $A B$

BA
Q. Now, think about the letters A, B and C. How many ways can you order them?

$A B C$	$B C A$	There are 6 ways which is $3 \times$ (number
$A C B$	$C A B$	ways you can order 2 letters).
$B A C$	$C B A$	

Q. Now, think about the letters A, B, C and D. How many ways can you order them?
$B A C D \quad$ CABD DABC ways you can order 3 letters).
BCAD CBAD DBAC
BCDA CBDA DBCA etc.

Permutations
If there are n objects and we want to choose r objects to order at a time, we can divide factorials.

For example: If we have A, B, C, D, and we want to order 2 letters

$A B$	$A C$	$A D$	$B C$	$B D$	$C D$
$B A$	$C A$	$D A$	$C B$	$D B$	$D C$

There are 4 choices for the first space and 3 choices for the second.
So there are $4 \times 3=12$ choices
Q. How can you write this using factorial notation?
Q. What if you have 5 letters and want to order 3?

Permutations
Algebraically, this can be written as $\frac{n!}{(n-r)!}$
where n is the number of objects. ' r ' is how many you are choosing.

We write it in this way so we can solve for unknowns and think in general terms.

On your calculator, you can use the ${ }^{n} P_{r}$ button.

$$
\frac{6!}{(6-3)!}=\frac{6!}{3!} \frac{n!}{(n-r)!}
$$

In this case, anything after 3! is not needed so to cancel it out so we can say $4!\div 2!=12$

$$
\frac{4!}{2!}=\frac{4 \times 3 \times 2 \times 1}{2 \times 1}=12
$$

Work out the following:

1. How many ways can you order 3 books on a shelf from a choice of 7 books? $\frac{7!}{(7-3)!}=\frac{7!}{4!} \equiv 210$
2. In how many ways can the letters of the word BRIDGE be arranged in a row taking 4 at a time?

$$
\frac{6!}{(6-4)!}=\frac{6!}{2!}=360
$$

Combinations

If you are given n objects, you have to place r of them and the order doesn't matter, there will be less possibilities. These are known as combinations.

To work out combinations, we first look at all the permutations and then get rid of the unnecessary variations.

For example: We have to choose 3 letters from $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ and the order doesn't matter.

How can you write this using factorial notation? $\quad \frac{5!}{3!(5-3)!}$

Can we write a general formula to show it algebraically?

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

There are some statements we can now consider -

$$
\binom{n}{n}=1 \quad\binom{\cap}{\mathbb{1}}=\boldsymbol{\cap} \quad\binom{n}{0}=1 \quad\binom{n}{r}=\binom{n}{n-r}
$$

Try to think about why these are true

$$
\begin{aligned}
& \binom{6}{2} \\
& \frac{n!}{r!(n-r)!}=\frac{\binom{6}{4}}{(n-r)!(n-(n-r)!} \\
& \frac{n!}{(n-r)!r!}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Using our notation to solve for ' } n \text { ' and/ or ' } r \text { ' } \\
& \text { Examples: Solve for } \mathrm{n} \text {, where } \mathrm{n} \mathrm{~N} \\
& \text { 1. }(n+1)
\end{aligned}
$$

$$
\text { 1. }\binom{n+1}{2}=45
$$

$$
\begin{aligned}
& \Rightarrow \frac{(n+1)!}{2!(n+1-2)!}=\frac{(n+1)!}{2(n-1)!}=\frac{(n+1)(n)(n-1)!}{2(n-1)!} \\
& n(n+1)=90
\end{aligned}
$$

$$
\text { 2. }\binom{n+1}{2}+\binom{n}{1}=35 \quad \frac{(n+1)(n)(n-1)!}{2(\cap-\eta)!}+n=3
$$

$$
\begin{array}{ll}
\frac{(n+1)!}{2!((n+1)-2)!}+n=35 & \frac{(n+1)(n)}{2}+n=35 \\
\frac{(n+1)!}{2(n+1)!}+n=35 & \frac{n^{2}+n}{2}+n=35
\end{array}
$$

$$
\frac{n^{2}+n}{2}+\frac{2 n}{2}=3
$$

$$
\frac{n^{2}+3 n}{2}=5
$$

$$
n^{2}+3 n=70
$$

$$
n^{2}+h-70=0
$$

$$
(n+\infty)(n-7)+\infty
$$

Combinations

$$
\text { In general, we write it algebraically as }\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

Examples:

1. How many ways can you choose 3 friends from 10 friends to go to a concert? $\quad \frac{10!}{3!(10-3)!}=\frac{10!}{3!7!}=\frac{10 \times 9 \times 8 \times 7!}{3!7!}=120$
2. The lotto! How many ways is there of choosing 6 numbers from

59? ${ }^{n} C_{R}={ }^{59} C_{6}=45057474$

$$
\binom{n+1}{r}=\binom{n}{r-1}+\binom{n}{r} \quad \text { RUS }
$$ $\frac{n!}{(r-1)!(n-(r-1))!}+\frac{n!}{r!(n-r)!}$ $x \frac{n!}{(r-1)!(n-r+1)!}+\frac{n!}{r!(n-r)!} x^{(n)}$

$\frac{n!r}{r!(n-r+1)!}+\frac{n!(n-r+1)}{r!(n-r+1)!}$
$\frac{n!r+n!(n-r+1)}{r!(n-r+1)!}$
$\frac{n!(d+n-r+1)}{r!(n-r+1)!}$
$n!(n+1)$ $r!(n-r+1)$
$=\frac{(n+1)!}{r!(n-r x)}=$ LH.S

Q2. Solve the following equations where $\mathrm{n} \in \mathrm{N} \quad\binom{n}{r}=\frac{n!}{r!(n-r)!}$
(i) $\quad\binom{n-1}{2}=28$
(ii) $2!(n-2)$! $=3$! $(n-3)$!

(ii) 2 ! $(n-2)$! $=3!(n-3)$!

$$
\begin{aligned}
2(n-3!(n-2) & =6(n-3)! \\
2 n-4 & =6 \\
2 n & =10 \\
n & =5
\end{aligned}
$$

$\binom{n+1}{r}=\binom{n}{r-1}+\binom{n}{r}$
(ii) $\binom{4}{n-1}+\binom{4}{n}=5$
$\binom{4+1}{n}=5$
$\binom{5}{n}=5$
$n=4$ or $n=1$

Expanding Brackets
Multiply out the following and simplify:
(i) $(x+y)^{2}$
(ii) $(x+y)^{3}$
(iii) $(x+y)^{4}$
(iv) $(x+y)^{5}$

Pascal's Triangle

The numbers in Pascal's triangle represent the coefficients of the terms in the expansions.

Increasing powers of y

Pascal's Triangle
The coefficients can be written using $\binom{n}{r}$ notation.

They are the same as working out the combination when n is the power and r is ascending from O to n.

The Binomial Theorem
We can write a simplified version using Sigma Notation
$(a+b) n=\sum_{r=0}^{n}\binom{n}{r} a^{n-r} b^{r}$

This formula is provided in your exam

The Binomial Theorem Homework

1. Expand:
(a) $\quad(x+5)^{3}$
(b) $(a+2)^{4}$
(c) $\quad(m-3)^{5}$
(d) $(5-y)^{4}$
(e) $\quad(2 x+3)^{3}$
(f) $\quad(3 p+1)^{4}$
(g) $\quad(2 x+y)^{5}$
(h) $(2 k-5)^{3}$
(i) $(3 x-2 y)^{4}$
(j) $\left(x^{2}+2\right)^{3}$
(k) $\left(y^{3}-2\right)^{4}$
(1) $\left(x+\frac{1}{x}\right)^{3}$
$\left(x+x^{-1}\right)^{3}$

Pg. 9 chooses smart fin qu

(l) $\binom{3}{0} x^{3}+\binom{3}{1} x^{2}\left(x^{-1}\right)+\binom{3}{2} x\left(x^{-1}\right)^{2}+\binom{3}{3}\left(x^{-1}\right)^{3}$

$$
\begin{aligned}
& x^{3}+3 x+3 x^{-1}+x^{3} \\
& x^{3}+3 x+\frac{3}{x}+\frac{1}{x^{3}}
\end{aligned}
$$

The Binomial Theorem
Using Pascal's Triangle, we can write that in general

$$
(a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2} \ldots .+\binom{n}{n} a^{n-n} b^{n}
$$

$(a+b)^{n}=\sum_{r=0}^{n} a^{n-r}$

The Binomial Theorem

Examples: Expand the following using the Binomial Theorem

$$
\underline{x^{4}+8 x^{3} y+24 x^{2} y^{2}+32 x y^{3}+16 y^{4}}+\binom{4}{4} x(2)^{4}
$$

2. (1-3b) ${ }^{8}$

$$
\begin{aligned}
& 1-9 b+27 b^{2}-27 b^{3} \\
& \text { (3) }(2 x+3 y)^{4} \\
& \binom{4}{0}(2 x)^{4}+\binom{4}{1}(2 x)^{3}(3)+\binom{4}{2}(3 x)^{2}(3 y)^{2}+\binom{4}{3}(20 \\
& \left.11.4 \text {... }+\binom{4}{4}_{(3, y)}\right)^{4}
\end{aligned}
$$

The Binomial Theorem
3. Find the 4 th term in the expansion of $\left(x^{2}-\frac{2}{x}\right)^{7}=\left(x^{2}-2 x^{-1}\right)^{7}$

$$
\begin{gathered}
\binom{7}{3}\left(x^{2}\right)^{4}\left(-2 x^{1}\right)^{3} \\
35 x^{8}\left(-8 x^{-3}\right) \\
-280 x^{5}
\end{gathered}
$$

$$
(a+b)^{n}=\sum_{r=0}^{n}\binom{n}{r} a^{n-r} b^{r}
$$

Challenge Question: Homework
If the fort 3 terms in the expansion of $(1+a x)^{n}$ are
$1-4 x+7 x^{2}$, find the values of a and n, for $n \in \mathbb{N}, n>1$ - $\operatorname{lac}\left(\begin{array}{l}n \\ 1 \\ 1\end{array}\right) a x \quad a_{1} \pi^{2}=\left(\frac{n}{2}\right)\left(\frac{-1}{n}\right)$

 $\frac{7 n^{2}}{16}=\binom{n}{2}$
$-4=A \ln \frac{7 n^{2}}{8}=\eta^{2}-n$ $\frac{7 n^{2}}{16}=\frac{n}{2(2(p n-2)!}$
$-4=8 a \quad \frac{8}{7 n^{2}}=8 n^{2}-8 n$ $\frac{7 n^{2}}{6}=\frac{n(n-1)(n-2)!}{2(n-2)}$ $a=-1 / 2$

$$
\begin{array}{ll}
\begin{array}{ll}
n=8 \\
0 & =n^{2}-8 n \\
0 & =n(n-8) \\
\text { on } n=8
\end{array} & \frac{7 n^{2}}{16}=\frac{\left.n\left(n_{0}\right) 1\right)}{2}
\end{array}
$$ $n=8$

The Binomial Theorem PP Questions
Q. State and simplify the general term in the binomial expansion of $\left(2 x-\frac{5}{x^{2}}\right)^{6}$.
Q. 1. Use the binomial theorem to expand and simplify
$\left(\frac{x^{2}}{3}-\frac{2}{x}\right)^{5}$.
Q. Write down and simplify the general term in the expansion of $\left(2 x-\frac{1}{x^{2}}\right)^{9}$.
Q. Write down and simplify the general term in the expression $\left(\frac{2}{x}+\frac{1}{4 x^{2}}\right)^{10}$.

Hence, or otherwise, obtain the term in $\frac{1}{x^{13}}$
Q. Write down the binomial expansion of $\left(3 x-\frac{2}{\mu^{2}}\right)^{4}$ and simplify your answer.
Q. Use the binomial theorem to expand $\left(\frac{1}{2} x-3\right)^{4}$
Q. \qquad

Finding the term independent of a or b

$$
(a+b)^{n}=\sum_{r=0}^{n}\binom{n}{r} a^{n-r} b^{r}
$$

We can substitute in the value of r

The Binomial Theorem
2. Find the term independent of x in the binomial expansion

The Binomial Theorem
Expanding multiple brackets Use the Binomial Theorem on each separately

Example: Expand out $\left(1+x-x^{2}\right)(1-x)^{3}$ up to and including the term x^{3}.

AH Binomial Theorem.notebook

The Binomial Theorem
2. What is the coefficient of x^{5} in the expansion of $(1+x)^{4}(1-2 x)^{3}$?

