The Euclidean Algorithim
An algorithim is a step-by-step procedure for performing a calculation according to well-defined rules.

The Euclidean Algorithim is an efficient method to find the greatest common divisor (aka the highest common factor) of a pair of numbers.

Two integers are said to be coprime or relatively prime when the g.c.d or h.c.f is 1.

## The Euclidean Algorithim

First express one number in terms of the other plus its remainder.

Examples: Use the Euclidean Algorithim for the following:
(a) Find the ged of 140 and 252


The Fudidean Algorithim
When you are finding the ged of a pair of numbers a and $b$, use the notation (a, b).

For example:
$(6,9)=3$

The remainder is zero and the greatest common divisor is th alast non-zero remainder.

The Euclidean Algorithim
Examples: Use the Euclidean Algorithm for the following:
(b) Find the ged of 132 and 424
$424=3 \times 132+28$
$132=4 \times 28+20$
$28=1 \times 20+8$
$20=2 \times 8+4$
$8=2 \times 4+0$
$(132,424)=4$

The Euclidean Algorithim
Examples: Use the Euclidean Algorithm for the following:
(c) Find the ged of 280 and 117

$$
\begin{aligned}
& 280=2 \times 117+46 \\
& 117=2 \times 46+25 \\
& 46=1 \times 25+21 \\
& 25=1 \times 21+4 \\
& 21=5 \times 4+1 \\
& 4=4 \times 1+0 \\
& (280,117)=1
\end{aligned}
$$

The Fuclidean Algorithim
Examples:
(d) Simplify 684

|  | 1692 |
| ---: | :--- |
| 1692 | $=2 \times 684+324$ |
| 684 | $=2 \times 324+36$ |
| 324 | $=9 \times 36+\frac{\overline{0}}{}$ |
| $\operatorname{gcd}=36 \quad \frac{684}{1692 \div 36} \div 36=\frac{19}{47}$ |  |

Writing the ged as a linear combination
2. Find integers $x$ and $y$ such that $1078 x+420 y=14$
$(1078,420)$
$1018=2 \times 420+238$
$420.1 \times 238+182$
$238=1 \times 182+56$

- $182 \cdot 3 \times 56+14$
$56=4 \times 14+0$
Worneng backewards
$14=182-3 \times(238-1 \times 182)$
$14=182-3 \times 238+3 \times 182$
$14=4 \times 182-3 \times 238$
$14=4 \times(420-1 \times 238)-3 \times 238$
$14=4 \times 420-4 \times 238-3 \times 238$
$14=4 \times 420-7 \times 238$
$14=4 \times 420-7 \times(1078-2 \times 420)$
$14=4 \times 420-7 \times 1078+14 \times 420$
$14=18 \times 420-7 \times 1078$
$x+y_{7} y$
$\qquad$
$3066 p+713 q=1$.

The Division Algorithm
Any division can be written in the form of an equation

$$
a \div b \text { or } a / b \text { can be written as } a=q b+r
$$

where q is the quotient, b is the divisor and r is the remainder.

Examples:
(a) Use the Euclidean algorithim to show that $(231,17)=1$

Ca) Hence find integers such that $231 x+17 y=1$
$231=18 \times 17+10$ If $=1 \times 10+7$
$10=1 \times 7+3$
$+7.2 \times 3+1$ $3.3 \times 1+0$ ged $230 \mathrm{odlif}=1$
(b) $* 1.7-(2 \times 3)$ $1=7-\left(2 \times\left(10-1 x^{7}\right)\right.$
$(107-(2 \times 10-2 \times 7)$
$127-2 \times 10+2 \times 7$
$103 \times 7-2 \times 10$
$1.3 \times(17-1 \times 10)-2 \times 10$

1. $3 \times 17=3 \times 10-2 \times 10$
$1=3 \times 17-5 \times 10$
$1=3 \times 17-(5 \times(23-1-13 \mathrm{~N})$ )
$\mid=3 \times 17-5 \times 231+65 \times 17$ |= $=68 \times 17-5 \times 231$
$x y=5$

Use the Euclidean algorithm to find integers $p$ and $q$ such that

$$
3066 p+713 q=1
$$

Vsing the Division Algorithm for number bases
We can use the division algorithm to convert integers into other number bases such as binary, octal and hexadecimal.
$\left.\begin{array}{llllll}\begin{array}{c}\text { We currently use the base } 10 \text { system } \\ 25367\end{array} & 10^{5} & 10^{4} & 10^{3} & 10^{2} & 10^{1}\end{array}\right] 10^{\circ}$.
$2 \times 10^{4}+5 \times 10^{3}+3 \times 10^{2}+6 \times 10^{1}+7 \times 10^{\circ}=25367$
We can use any integer as a number base but the most useful are 2,8 , and 16.

The divisor is always the number base you are converting to.

Vsing the Division Algorithm for number bases

## Base 2 - Binary

This is a system which involves only two digits; O and 1 . The place values are all powers of 2

$$
\begin{gathered}
2^{4} 2^{3} 2^{2} 2^{1} 2^{0} \\
1101^{\circ}+1 \times 2^{1}+0 \times 2^{2}+1 \times 2^{3}+1 \times 2^{4}=26
\end{gathered}
$$

Example: Convert 30 into binary

$$
\begin{aligned}
& 30=15 \times 2+0 \\
& 15=7 \times 2+1 \\
& 7=3 \times 2+1 \\
& 3=1 \times 2+1 \\
& 1=0 \times 2+1
\end{aligned} \quad 30_{2}=11110
$$

Using the Division Algorithm for number bases
Base 8 - Octal
This system uses powers of 8 as place values. It only uses the integers 0 to 7 .

Example: Convert 53467 into octal form

$$
\begin{aligned}
5346 & =6683 \times 8+3 \\
6683 & =835 \times 8+3 \\
835 & =104 \times 8+3 \\
104 & =13 \times 8+0 \\
13 & =1 \times 8+5 \\
1 & =0 \times 8+1
\end{aligned}
$$

$$
150333
$$

## Fundamental Theorem of Arithmetic

This theorem states that every positive integer $>1$ gan be written as a product of prime factors.
E.g. $48=$

6.
$3^{2} \times 5^{2} \times 7$

$$
\begin{aligned}
& 48=3 \times 2 \times 2 \times 2 \times 2=2^{4} \times 3 \\
& \text { This is knownas the cononical form of an integer. }
\end{aligned}
$$

A composite number is one that has factors other than itself and 1.
The Goldbach conjecture states that every even integer greater than 2 is the sum of two primes. (Still has to be proved!)

## Specimen Paper

Show that the greatest common divisor of 487 and 729 is 1 .
Hence find integers $x$ and $y$ such that $487 x+729 y=1$.

2015
Use the Euclidean algorithm to find integers $p$ and $q$ such that
$3066 p+713 q=1$.

2012

