Starter
25.12017

The first and fourth terms of a geometric series are 2048 and 256 respectively Calculate the value of the common ratio.
Given that the sum of the first n terms is 4088 , find the value of n. 3
$a=2048$
$a r^{3}=256$
$r^{3}=\frac{256}{a}$
$r=\frac{1}{2}$

Power Series

$?$

In general, we can express any function as a power series in the following way where $a_{0}, a_{1} \ldots$ are constants

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0} x^{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots
$$

A power series may only converge for certain values of x.

Power Series
A series in which its terms are increasing powers of x is known as a power series.

For example: $\quad 1+x+x^{2}+x^{3}+x^{4}+\ldots$

What is r in this series? $r=x$

If $-1<x<1$, this series has a sum to infinity, we can write this as $1-x$

Hence $S \infty$ of $1+x+x^{2}+x^{3}+x^{4}+\ldots=(1-x)^{-1}$

Maclaurin Series
$f(x)=$
Given the series $a_{0} x^{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}+\ldots$ where $a_{0}, a_{1} \ldots$ are constants

$$
a_{0}+a_{1} x+a_{2} x^{2}+\ldots
$$

We can find the coefficients of the above by evaluating the function and its
derivatives at $x=0$

$$
f(0)=a_{0}+a_{1}(0)+a_{2}(0)^{2}+\ldots
$$

$f(0)=a_{0}$
$f^{\prime}(x)=a_{1}+2 a_{2} x+3 a x^{2}+\cdots \cdot$
$f^{\prime}(0)=a_{1}+2 a_{2}(0)+3 a_{5}(0)^{2}$
$f^{\prime}(0)=a_{1}$
$f^{\prime \prime}(x)=2 a_{2}+6 a_{3} x+\ldots$
$f^{\prime \prime}(0)=2 a_{2}+6 a_{3}(0)+\ldots$
$f^{\prime \prime}(0)=2 a_{2}$
$\frac{f(a)}{2}=a_{2}$
$f^{\prime \prime}(x)=6 a_{3}+\ldots \ldots$
$f^{\prime \prime}(0)=6 a_{3}$
$f^{\circ} \%(0)=a_{3}$

$$
\begin{aligned}
& \text { Maclaurin Series } \quad f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\ldots \\
& \begin{array}{ll}
\text { Examples: }
\end{array} \\
& \text { 1. Find the Maxclaurin series for the function } f(x)=e^{2 x} \text { up to and including } \\
& \text { the term } x^{2} \\
& \begin{array}{ll}
f^{2 x}(x)=e^{2 x} & f(0)=e^{\circ}=1 \\
f^{\prime \prime}(x)=2 e^{2 x} & f^{\prime \prime}(0)=2 e^{\circ}=2 \\
f^{\prime \prime}(x)=4 e^{2 x} & f^{\prime \prime}(0)=4 e^{\circ}=4 \\
f^{\prime \prime}(x)=8 e^{2 x} & f^{\prime \prime}(0)=8 e^{\circ}=8 \\
f^{(4)}(x)=16 e^{2 x} & f^{\prime \prime \prime}(0)=16 e^{\circ}=16 \\
f(x)=1+2 x+\frac{4}{2!} x^{2}+\frac{8}{3!} x^{3}+\frac{16}{4!} x^{4}+\ldots \\
f(x)=1+2 x+2 x^{2}+\frac{4}{3} x^{3}+\frac{2}{3} x^{4}+\ldots=e^{2 x}
\end{array}
\end{aligned}
$$

```
Maclaurin Series \(\quad f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\ldots\)
Examples:
2. Find the Maclaurin series for the function \(f(x)=\cos 2 x\) up to and
including the term \(x^{4}\)
\[
\begin{array}{ll}
f(x)=\cos 2 x & f(0)=\cos 0=1 \\
f^{\prime}(x)=-2 \sin 2 x & f^{\prime}(0)=-2 \sin 0=0 \\
f^{\prime \prime}(x)=-4 \cos 2 x & f^{\prime \prime}(0)=-4 \cos 0=-4 \\
f^{\prime \prime \prime}(x)=8 \sin 2 x & f^{\prime \prime \prime}(0)=8 \sin 0=0 \\
f^{\prime \prime \prime}(x)=16 \cos 2 x & f^{\prime \prime \prime}(0)=16 \cos 0=16 \\
\cos 2 x=1-\frac{4}{2!} x^{2}+\frac{16}{4!} x^{4}+\ldots \ldots
\end{array}
\]
\[
\cos 2 x=1-2 x^{2}+\frac{2}{3} x^{4}+\cdots
\]
```


Maclaurin Series

Examples:

3. Find the Maclaurin series for the function $f(x)=\ln (1+3 x)$ up to and including the term x^{4}
$f(x)=\ln (1+3 x)$
$f(x)=\frac{1}{1+3 x} \cdot 3=\frac{3}{1+3 x}=3(1+3 x)^{-1}$
$f(0)=\ln (1)=0$
$\left.f^{\prime}()^{\prime}\right)=3$
$f(x)=-3\left(1+3 x x^{-2}(3)=-9(1+3 x)^{2}\right.$
$f^{\prime \prime}(0)=-9$
$f^{\prime \prime}(x)=8(1+3 x)^{-7}(3)=54(1+3 x)^{3}$
$f^{\prime \prime}(0)=54$
$f^{M}(x)=-112(1+3 x)^{-4}(3)=-486(1+3 x)^{4} \quad f^{09}((0)=-486$

$$
\begin{aligned}
& -112(1+3 x)=(3)=-406 \\
& \ln (1+3 x)=0+3 x-\frac{9}{2} x^{2}+\frac{54}{3} x^{3}-\frac{486}{4} x^{4}+\cdots \\
& 3 x-\frac{9 x^{2}}{}+9 x^{3}-\frac{81}{4} x^{4}+\cdots
\end{aligned}
$$

$$
=3 x-\frac{9 x^{2}}{2}+9 x^{3}-\frac{81}{4} x^{4}+\cdots
$$

$\bar{i}=2(\cos 6+i s \sin 6)$
$\bar{z}^{2}=4(\cos 120+i \sin 120)$
Examples:
4. Find the Maclaurin series for the function $\mathrm{f}(\mathrm{x})=\sqrt{1+4 x}$ up to and including the term x^{4}

$f(x)=(1+4 x)^{4}$	$f(0)=1$
$f(x)=\frac{1}{2}(1+4 x)^{-\frac{1}{2}}(4)=2(1+4 x)^{-\frac{1}{2}}$	$f^{\prime}(0)=2$

$\begin{array}{ll}f^{\prime \prime}(x)=-1(1+4 x)^{-3 / 2}(4)=-4(1+4 x)^{-\frac{5}{2}} & f^{\prime \prime}(0)=-4 \\ f^{\prime}(x) & f^{\prime \prime}(0)=24\end{array}$
$f^{\prime \prime}(x)=6(1+4 x)^{-5 / 4}(4)=24(1+4 x)^{-5 / 2}$

$f^{-1}(0)=-240$
$\sqrt{1+4 x}=1+2 x-\frac{4 x^{2}}{2}+\frac{24 x^{3}}{35}-\frac{240 x^{4}}{4!}+\cdots \cdot$
$=1+2 x-2 x^{2}+4 x^{3}-10 x^{4}+\cdots$

Maclaurin Series - Composite Functions

Examples:
6. (a) Find the Maclaurin series for the function $f(x)=\sin ^{2} x$ up to and including the term x^{4}
(b) Hence obtain the Maclaurin series for the function $\cos ^{2} x$
up to and including the term in x^{4}

```
Maclawrin Series - Composite Functions__
Examples:
6. (a) Find the Maclaurin series for the function }\textrm{f}(\textrm{x})=\mp@subsup{\operatorname{sin}}{}{2}x\mathrm{ up to and
including the term x
```

For certain functions we cannot find a MacLaurin series expansion as the derivative is undefined at $x=0$.
up to and including the term in $x^{4} \quad f(0)=0$

$f^{\prime}(x)=2\left(\right.$ max $(\cos)=2 \cos (x) \quad f^{\prime}(0)=2$ $f^{\prime}(x)=2 \sin \left(-\sin ^{2} x\right)+\cos ^{2}(x) x+2 \sin ^{2} x \quad f^{\prime \prime}(x)=0$
 $f^{m}(x)=-8 \cos x(\cos x)+\sin x(\sin x)$ $=8 \sin ^{2} x-8 \cos ^{3} x+x^{2}+\frac{8 x^{3}}{3}-\frac{2 x^{4}}{4}+\cdots$ $=x^{2}-\frac{x^{3}}{3}+$
(b) $\begin{aligned} \cos ^{2} x & =1-\sin ^{2} x \\ & =1-\left(x^{2}-\frac{x^{4}}{8}+\ldots\right)\end{aligned}$ $=1-x^{2}+\frac{x^{4}}{3}+\cdots$

1) $f(x)=\ln x \quad f^{\prime}(x)=\frac{1}{x} \quad f^{\prime}(O)=\frac{1}{0}$ which is undefined
2) $f(x)=\sqrt{x}=x^{1 / 2} \quad f^{\prime}(x)=1 / 2 x^{-1 / 2}=\quad f^{\prime}(0)=\frac{1}{0}$ which is undefined.
