1.5 Applying algebraic and calculus skills to problems	
Sub-skill	Description
Applying differentiation to problems, in context	Apply differentiation to problems in context
Apply differentiation to optimisation	
Applying integration to problems, in context	Apply integration to volumes of revolution where the volume generated is by the rotation of the area under a single curve about the x and y axes
Use calculus to determine corresponding connected integrals	
Apply integration to the evaluation of areas including integration	
with respect to y	

Applications of Integration - Area
Recap: Area between a curve and the x - axis

Examples: 1. Find the area between the function $y=4 x-2 x^{2}$ and the x-axis

Applications of Integration - Area
2. Calculate the area between $f(x)$ and the x-axis where $x=0, x=4$

$$
\begin{aligned}
& \text { xis where } \mathrm{x}=0, \mathrm{x}=4 \\
& f(x)=\frac{4 x}{\sqrt{x^{2}+2}} \int_{0}^{4} \frac{4 x}{\sqrt{x^{2}+2}}
\end{aligned}
$$

$$
\begin{aligned}
=2 \int_{2}^{18} \frac{1}{u^{1 / 2} d u}=2 \int_{2}^{18} u^{-\frac{1}{2}} d u=\left[4 u^{\frac{1}{2}}\right]_{2}^{18} & =[4 \sqrt{18}]-[4 \sqrt{2}] \\
& =12 \sqrt{2}-4 \sqrt{2}=8 \sqrt{2} \text { units } s^{2}
\end{aligned}
$$

Applications of Integration - Area
Area between a curve and the y-axis

To evaluate the integral, x must be expressed in terms of y.

Applications of Integration - Area
Examples:

1. Calculate the shaded area shown

$=\left[\frac{2(\sqrt{4})^{3}}{3}\right]-\left[\frac{2(\sqrt{1})^{3}}{3}\right]$
$=\frac{16}{3}-\frac{2}{3}=\frac{14}{3}$ units 2

Applications of Integration - Area
Examples:
2. Find the shaded area

$=\left[\frac{3(\sqrt[3]{y})^{4}}{4}+4 y\right]_{1}^{8}=\left[\frac{3(\sqrt[3]{8})^{4}}{4}+4\right.$

$$
=[12+32]-\left[\frac{3}{4}+4\right]
$$

$$
=44-\frac{19}{4}=\frac{176}{4}-\frac{19}{4}=\frac{157}{4} \text { units }^{2}
$$

Volumes of solids of revolutions

When a region in the xy plane is rotated through 360° about the x - axis, a solid of revolution is formed.
E.g. If the shaded triangle below is rotated 360° about the x-axis, a cone is formed.

Volumes of solids of revolutions
When the shaded semi-circle is rotated through 360° about the x-axis, a sphere is formed.

Volumes of solids of revolutions

Area under a curve can be thought of as the sum of all the rectangles under a curve.
Volume of revolution can be thought of as the sum of cylindrical (approximately) discs where $V=\pi r^{2 h}$ with radius y and thickness $d x$.

$$
V=\int_{a}^{b} \pi y^{2} d x \quad \text { where } y=f(x)
$$

If we rotate about the y-axis, we get a similar result

$$
V=\int_{a}^{b} \pi x^{2} d y \quad \text { where } x=f(y)
$$

Volumes of solids of revolutions

Examples:

1. Find the volume of the solid formed when the shaded region below is rotated 360° about the $\mathrm{x}-\mathrm{axis}$.

$$
\begin{aligned}
& V=\int \pi y^{2} d x \\
& V=\pi \int_{1}^{2}\left(x^{2}+2\right)^{2} d x \\
& V=\pi \int_{1}^{2}\left(x^{4}+4 x^{2}+4\right) d x
\end{aligned}
$$

$$
V=\pi\left[\frac{32}{5}+\frac{32}{3}+8\right]-\pi\left[\frac{1}{5}+\frac{4}{3}+4\right]
$$

$$
V=\pi\left[\frac{376}{15}\right]-\pi\left[\frac{83}{15}\right]=\frac{293 \pi}{15} \text { units }^{3}
$$

Examples:
2. Calculate the volume of the solid formed when the semi-circle with equation $x^{2}+y^{2}=r^{2}, y \geq 0$ is given a full turn about the $x-$ axis.

Volumes of solids of revolutions

Past Paper Questions:
2004
11. A solid is formed by rotating the curve $y=e^{-2 x}$ between $x=0$ and $x=1$ through 360° about the x-axis. Calculate the volume of the solid that is formed.

$$
\begin{aligned}
& V=\pi \int y^{2} d x \\
& V=\pi \int_{0}^{1}\left(e^{-2 x}\right)^{2} d x=\pi \int_{0}^{1} e^{-4 x} d x \text { Q10. } \\
&=\pi\left[\frac{e^{-4 x}}{-4}\right]_{0}^{1}=\pi\left[\frac{e^{-4}}{-4}\right]-\pi\left[\frac{e^{0}}{-4}\right]==\frac{-\pi}{4 e^{4}}+\frac{\pi}{4} \\
&=\frac{\pi}{4}\left(1-\frac{1}{e^{4}}\right)
\end{aligned}
$$

$$
\text { Q10. } 2007
$$

$$
\text { QI. } 2014
$$

$$
\begin{aligned}
& \begin{array}{l}
x^{2}+y^{2}=r^{2} \\
y^{2}=r^{2}-x^{2}
\end{array} \\
& V=\pi \int y^{2} d x \\
& V=\pi \int_{-r}^{r} r^{2}-x^{2} d x \\
& V=\pi\left[r^{2} x-\frac{x^{3}}{3}\right]_{-r}^{r} \\
& V=\pi\left[r^{2}(r)-\frac{r^{3}}{3}\right]-\pi\left[r^{2}(-r)-\frac{(-r)^{3}}{3}\right] \\
& V=\pi\left[\frac{2 r^{3}}{3}\right]-\pi\left[-\frac{2 r^{3}}{3}\right]=\frac{4}{3} \pi r^{3}
\end{aligned}
$$

Volumes of solids of revolutions

Past Paper Questions:

2007
10. Use the substitution $u=1+x^{2}$ to obtain $\int_{0}^{1} \frac{x^{3}}{\left(1+x^{2}\right)^{4}} d x$.

A solid is formed by rotating the curve $y=\frac{x^{3 / 2}}{\left(1+x^{2}\right)^{2}} \quad$ between $x=0$ and $x=1$ through 360° about the x-axis. Write down the volume of this solid.

Volumes of solids of revolutions

Past Paper Questions:
2007
10. A semi-circle with centre $(1,0)$ and radius 2 , lies on the x-axis as shown.

Find the volume of the solid of revolution formed when the shaded region is rotated completely about the x-axis.

Volumes of solids of revolutions

Past Paper Questions:
2017
16. On a suitable domain, a curve is defined by the equation $4 x^{2}+9 y^{2}=36$.

A section of the curve in the first quadrant, illustrated in the diagram below, is rotated 360° about the y-axis.

