Differential Equations
A differential equation is an equation involving one or more derivatives.

$$
\begin{array}{ll}
\left(x^{2}-1\right) \frac{d y}{d x}+2 x y=x & \begin{array}{l}
\text { is a first order differential equation as it contains the } \\
\text { first derivative only. }
\end{array} \\
\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+4 y=0 & \begin{array}{l}
\text { is a second order differential equation as it contains } \\
\text { the second derivative. }
\end{array}
\end{array}
$$

If a first order differential equation can be written in the form

$f(y) d y=g(x) d x$

where $f(y)$ is a function of y only and $g(x)$ is a function of x only, we say that we have separated the variables x and y.

The general solution of the differential equation is then found by integrating each side with respect to the appropriate variable.

$$
f(y) d y=\int g(x) d x
$$

General solution of differential equations
2. Find the general solution of the differential equation

$$
\frac{d y}{d x}=\frac{x^{2}}{y}
$$

$$
\int y d y=\int x^{2} d x
$$

$$
\frac{y^{2}}{2}=\frac{x^{3}}{3}+c
$$

$$
\begin{aligned}
3 y^{2} & =2 x^{3}+C \\
y^{2} & =\frac{2}{3} x^{3}+C
\end{aligned} \quad \text { Total constant }
$$

$$
y=\left(\frac{2}{3} x^{3}+C\right)^{\frac{1}{2}}
$$

Differential Equations
If we have a function $y=f(x)$, we can verify that the function satisfies a particular differential equation.

$$
\begin{aligned}
& \text { For example: } \\
& \text { Verify that } y=A e^{5 x}+B e^{-2 x} \quad \text { where } A, B \text { are constants } \\
& \text { satisfies the differential equation } \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}-10 y=0 \\
& y=A e^{5 x}+B e^{-2 x} \\
& \begin{aligned}
& \frac{d y}{d x}=5 A e^{5 x}-2 B e^{-2 x} \\
& \frac{d^{2} y}{d x^{2}}=25 A e^{5 x}+4 B e^{-2 x} \\
& 25 A e^{5 x}+4 B e^{-2 x}-3\left(5 A e^{5 x}-2 B e^{-2 x}\right)-10\left(A e^{5 x}+B e^{-2 x}\right) \\
&= 25 A e^{5 x}+4 B e^{-2 x}-15 A e^{-x}+6 B e^{-2 x}-10 A e^{5 x}-10 B e^{-2 x} \\
& 10 A e^{5 x}-10 A e^{5 x}+10 B e^{-2 x}-10 B e^{-2 x} \\
&=0 \Rightarrow 5 \text { satisfies the equation }
\end{aligned}
\end{aligned}
$$

General solution of differential equations

1. Find the general solution of the differential equation

$$
\begin{gathered}
\frac{d y}{d x}=x^{3}-x^{2} \\
\int 1 d y=\int\left(x^{3}-x^{2}\right) d x \\
y=\frac{x^{4}}{4}-\frac{x^{3}}{3}+C
\end{gathered}
$$

General solution of differential equations

3. Find the general solution of the differential equation
$e^{4 y} \frac{d y}{d x}-x=2$
$e^{4 y} \frac{d y}{d x}=2+x$
$e^{4 y} d y=(2+x) d x$
$\int e^{4 y} d y=\int(2+x) d x$ $\frac{1}{4} e^{4 y}=2 x+\frac{x^{2}}{2}+C$ $e^{4 y}=8 x+2 x^{2}+C$
1 Take the $\log _{e}$ of both sides

$$
4 y=\ln \left|8 x+2 x^{2}+c\right|
$$

$$
y=\frac{1}{4} \ln \left|8 x+2 x^{2}+c\right|
$$

General solution of differential equations
4. Find the general solution of the differential equation

$$
\frac{d y}{d x}=\frac{1}{16+4 x^{2}}
$$

$1 d y=\frac{1}{16+4 x^{2}} d x$

$$
\int 1 d y=\int \frac{1}{4\left(4+x^{2}\right)} d x
$$

$$
\int 1 d y=\frac{1}{4} \int \frac{1}{2^{2}+x^{2}} d x
$$

$$
y=\frac{1}{4}\left[\frac{1}{2} \tan ^{-1}\left(\frac{x}{2}\right)\right]+C
$$

$$
y=\frac{1}{8} \tan ^{-1}\left(\frac{x}{2}\right)+c
$$

General solution of differential equations
5. Find the general solution of the differential equation

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{2}{\sin y} \\
& \sin y d y=2 d x \\
& \int \sin y d y=\int 2 d x \\
&-\cos y=2 x+c \\
& \cos y=-2 x+C \\
& y=\cos ^{-1}(-2 x+C)
\end{aligned}
$$

General solution of differential equations
7. Find the general solution of the differential equation

$$
\begin{aligned}
\left(1+x^{2}\right) y^{2} \frac{d y}{d x} & =1 \\
\int y^{2} d y & =\int \frac{1}{1+x^{2}} d x \\
\frac{y^{3}}{3} & =\tan ^{-1}(x)+C \\
y^{3} & =3 \tan ^{-1}(x)+C \\
y & =\left(3 \tan ^{-1}(x)+C\right)^{\frac{1}{3}}
\end{aligned}
$$

General solution of differential equations
We can use properties of logs and exponents to help us simplify general solutions.

Examples:

1. Find the general solution of the differential equation

$$
\begin{aligned}
& \frac{d y}{d x}=4 y \\
& d y=4 y d x \\
& \int \frac{1}{y} d y=\int 4 d x \\
& \ln |y|=4 x+c \\
& e^{1} \\
& y=e^{4 x+c} \\
& y=e^{4 x} \cdot e^{c} \\
& y=A e^{4 x}
\end{aligned}
$$

General solution of differential equations
2. Find the general solution of the differential equation

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{y+2}{x+1} \longrightarrow(x+1) d y=(y+2) d x \\
& \int \frac{1}{y+2} d y=\int \frac{1}{x+1} d x \\
& \ln |y+2|=\ln |x+1|+C \\
& e^{n} \\
& y+2=(x+1) \cdot e^{c} \quad \\
& y \rightarrow e^{\ln |x+1|+c} d y=\frac{1}{x+1} d x \\
&=e^{n}|x+1| e^{c} \\
&=(x+1) \cdot e^{c}-2
\end{aligned} \quad \text { let } A=e^{c} .
$$

General solution of differential equations
3. Find the general solution of the differential equation

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{y}{2 x-1} \\
& \int \frac{1}{y} d y=\int \frac{1}{2 x-1} d x \\
& \ln |y|=\frac{1}{2} \ln |2 x-1|+C \\
& \ln |y|=\operatorname{h}(2 x-1)^{\frac{1}{2}}+c \\
& e^{\lambda} e^{\lambda} \\
& y=e^{c}(2 x-1)^{\frac{1}{2}} \quad \text { let } A=e^{c} \\
& y=A(2 x-1)^{\frac{1}{2}}
\end{aligned}
$$

Differential equations with partial fractions
Examples:

1. (a) Express $\frac{2 x+3}{x(x+1)}$ in partial fractions	$\frac{A}{x}+\frac{B}{x+1}=\frac{2 x+3}{x(x+1)}$		
$\frac{3}{x}-\frac{1}{x+1}$	$A(x+1)+B x=2 x+3$ let x=0		
	$A=3$	\quad	let $x=-1$
:---			
$B=1$			

(b) Hence find the general solution of the differential equation

$$
x(x+1) \frac{d y}{d x}=y(2 x+3)
$$

expressing y explicitly in terms of x

$$
\int \frac{1}{y} d y=\int \frac{2 x+3}{x(x+1)} d x
$$

$$
\int \frac{1}{y} d y=\int \frac{3}{x}-\frac{1}{x+1} d x
$$

$$
\ln |y|=3 \ln |x|-h|x+1|+C
$$

$$
\left.\ln y|=\ln | \frac{x^{3}}{x+1} \right\rvert\,+c
$$

$$
e^{\wedge} \quad e^{\hat{1}}
$$

$$
\begin{aligned}
& y=\frac{x^{3}}{x+1} \cdot e^{c} \quad \text { let } A=e^{c} \\
& y=\frac{A x^{3}}{x+1}
\end{aligned}
$$

Differential equations with partial fractions
3. Find the general solution of the differential equation

$$
x(x+1) \frac{d y}{d x}=y(3 x+1)
$$

expressing y explicitly in terms of x

$$
x(x+1) d y=y(3 x+1) d x
$$

$$
\frac{1}{y} d y=\frac{3 x+1}{x(x+1)} d
$$

Turn into partial fractions $\frac{A}{x}+\frac{B}{x+1} \Rightarrow A(x+1)+B(x)=3 x+1$

$$
\begin{aligned}
& \frac{1}{y} d y=\frac{1}{x}+\frac{2}{x+1} d x \quad x+x+1 \Rightarrow \frac{1}{y}(x+1)+ \\
& \int \operatorname{let} x=1 \\
& \Rightarrow \ln |y|=\ln |x|+2 \ln |x+1|+c \\
& \ln |y|=\ln x(x+1)^{2}+c \\
& e^{1} \quad e^{\wedge} \\
& y=x(x+1)^{2} \cdot c^{c} \quad \text { let } e^{c}=A
\end{aligned}
$$

$$
y=A x(x+1)^{2}
$$

Particular Solutions of differential equations
2. Find the particular solution of the differential equation

$$
\left.\frac{d y}{d x}=e^{3 x+2} \quad \right\rvert\, d y=e^{3 x+2} d x
$$

given that $y=e^{2}$ when $x=0$
$\int \log \cdot k^{x+2} d x$

$$
e^{2}=\frac{1}{3} e^{2}+c
$$

$$
\frac{2}{3 e^{2}}=C
$$

Particular Solutions of differential equations
3. Find the particular solution of the differential equation

$\qquad \frac{d y}{d x}=2 x y^{2}$	$\frac{1}{y^{2}} d y=2 x d x$
given that $y=-\frac{3}{10}$ when $x=-2$	$y^{-2} d y=2 x d x$
$-1=y\left(x^{2}+c\right)$	$-\frac{1}{y}=x^{2}+C$
$y=\frac{-1}{x^{2}-\frac{2}{3}}$	$y=-\frac{3}{10} x=-2$
$\Rightarrow y=\frac{-3}{3 x^{2}-2}$	$\frac{10}{3}=4+C$
	$-\frac{2}{3}=c$

Particular Solutions of differential equations
5. (a) Express $\frac{2}{(y+1)(x+3+3)}$ in partial fractions
(b) Hence find the particular solution of the differential equation

$$
\begin{array}{rrr}
\frac{1}{2} x & =\frac{y+1}{y+3} & \frac{y+1}{y+3}=A x \\
x=\frac{2 y+2}{y+3} & \frac{-5}{3}+1 \\
x(y+3)=2 y+2 & \\
x y+3 x=-\frac{5}{3} \\
x y-2 y=2-3 x & & -\frac{5+3}{-\frac{5}{3}+5}=-A \\
y(x-2)=2-3 x & A=\frac{1}{2} & \frac{-2}{4}=-A \\
y=\frac{2-3 x}{x-2} & &
\end{array}
$$

Particular Solutions of differential equations
Past Paper Question:
2017
5 marks

Solve $\frac{d y}{d x}=e^{2 x}\left(1+y^{2}\right)$ given that when $\mathrm{x}=0, \mathrm{y}=1$. Express y in terms of x $d y=e^{2 x}\left(1+y^{2}\right) d x$
$\int \frac{1}{1+y^{2}} d y=\int e^{2 x} d x$
$\tan ^{-1}(y)=\frac{1}{2} e^{2 x}+c$ $y \cdot \tan \left(\frac{1}{2} e^{2 x}+c\right) \quad(0,1)$
$1=\tan \left(\frac{1}{2}+c\right)$ $\tan ^{-1}=\frac{1}{2}+C$
$\frac{5}{4}=\frac{1}{2}+c$
$C=\frac{\pi}{4}-\frac{1}{2}$

Particular Solutions of differential equations
4. Find the particular solution of the differential equation

$$
(x+4) \frac{d y}{d x}=y-1
$$

given that $y=7$ when $x=-1 \quad \int^{(x+4) d y} \frac{1}{y-1} d y=(y-1) d x$
$=\ln |y-1|=\ln |x+\operatorname{cor}|+C$
$e^{n} \quad e^{n}$
$y-1=(x+4) \cdot e^{c} \quad$ en $A=e^{c}$
$\begin{aligned} y-1 & =A(x+4) \\ y & =A(x+4)+1\end{aligned} \quad \begin{array}{ll}y=7 \\ x=-1\end{array}$
$7=A(-1+4)+1$
$7=3 A+1$
$\begin{array}{ll}3 A=6 & y=2(x+4)+1 \\ A=2 & y=2 x+9\end{array}$

> Differential Equations as Mathematical Models
> Examples:
> The number of strands of bacteria x present in a culture after t days of growth is assumed
> o be increasing at a rate that is proportional to the number of strands present.
> (a) Write down a differential equation which represents this and find the general solution for
> x in terms of t.
> b) Given that there are 326 strands initially present and that the number of strands observed fer 4 days is 1833 , estimate the number of strands likely to be present after 1 week
> after 4 days is 1833 , estimate the number of strands likely to
> so kt $\frac{d x}{d t}=k x$ where k is a constant

Differential Equations as Mathematical Models
Examples:
2. The mass m (grams) of a radioactive substance at time t (years) decreases at a rate which is proportional to the mass at that time. The half-life of a radioactive substance is the time

Eamples	
object cools sumourded by ait at a temporature of 759 , the cooling of the object is govenned by a differential equation of the form	
(a) $\frac{d T}{d t} x-k(T-75)$	
dT--k(T.7F)dt	
$\int \frac{1}{T-75} d T \cdot f-\mathrm{kdt}$	
$e^{2} T-75=e^{e^{-t h}} e^{e} \quad$ eft $e^{e} \cdot A$	
T-75- Ae	
(6) t.0, $T=125^{\circ} \mathrm{C}$ too.5 Trio ${ }^{\circ} \mathrm{C}$	
A.50	
(i) F (80\% $\mathrm{C}=7$	
hol, -1736....t	

Further Differential Equations

So far we have only been working with non-linear first order differential equations that are separable.

What about this type of equation?

$$
\frac{d y}{d x}+2 x y=6 e^{2 x}
$$

Further Differential Equations

A first order differential equation where the variables cannot be separated is known as a first order linear differential equation and is generally of the form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

We need to perform some manipulation to get the equation into a form that we can work with. The method we use is called the integrating factor method
$I(x)=e^{\int P(x) d x}$ is known as the integrating factor.

Further Differential Equations
Examples:
2. Find the general solution of the differential equation

(2)
$P(x) y=Q(x)$
$I(x)=e^{\rho(x) d x}$

Further Differential Equations

Examples:

1. Find the general solution of the differential equation

Further Differential Equations
Examples:
3. Find the general solution of the differential equation

Further Differential Equations
Examples:
5. Find the general solution of the differential equation

$x \frac{d y}{d x}-2 y$	$=x^{3} \sin x$
$\frac{d y}{d x}-\frac{2 y}{x}$	$=x^{2} \sin x$
$P(x)=-2 x^{-1} \quad I(x)$	$=e^{\int-2 x^{-1} d x}=e^{-2 \ln x}=e^{\ln x^{-2}}=x^{-2}$
$x^{-2} \frac{d y}{d x}-\frac{2 y}{x^{3}}$	$=\sin x$
$\frac{d}{d x}\left(x^{2} y\right)$	$=\sin x$
$x^{-2} y$	$=\int \sin x d x$
$\frac{1}{x^{2} y=-\cos x+c}+x^{-2} y$	$=-\cos x+c$
y	$=-x^{2} \cos x+c x^{2}$

Further Differential Equations
Examples:
7. Find the general solution of the differential equation

Further Differential Equations
Examples:
4. Find the general solution of the differential equation

Further Differential Equations
Examples:
6. Find the general solution of the differential equation

Further Differential Equations - Particular Solutions

1. Find the particular solution for the differential equation
$x \frac{d y}{d x}+3 y=5 x^{2}$

given that $\mathrm{y}=3$ when $\mathrm{x}=1$

$$
\begin{aligned}
& \frac{d y}{d x}+\frac{3}{x} y=5 x \\
& P(x)=\frac{3}{x} \quad I(x)=e^{\int 3 x-1 d x}=e^{3 \ln x}=x^{3}
\end{aligned}
$$

$$
I(x)=e^{\int(x) d x}
$$

$$
x^{3} \frac{d y}{d x}+3 x^{2} y=5 x^{4}
$$

$$
\frac{d}{d x}\left(x^{3} y\right)=5 x^{4}
$$

$$
\begin{aligned}
& x^{3} y=\int 5 x^{4} d x \\
& x^{23}=x^{5}+c
\end{aligned}
$$

$$
\begin{aligned}
& x^{3} y=x^{3}+c \\
& y=x^{2}+\frac{c}{x^{3}}
\end{aligned}
$$

$$
\begin{gathered}
3=1+c \\
c=2
\end{gathered}
$$

$$
y=x^{2}+\frac{2}{x^{3}}
$$

$$
\begin{aligned}
& \begin{array}{rlrl}
\frac{d y}{d x}+2 x y=5 x \\
P(x)=2 x \quad I(x) & =e^{\int 2 x d x} & & \frac{d y}{d x}+P(x) y=Q(x) \\
& =e^{x^{2}} & I(x)=e^{P(x) d x}
\end{array} \\
& e^{x^{2}} \frac{d y}{d x}+2 e^{x^{2}} x y=5 e^{x^{2}} x \\
& \frac{d}{d x}\left(e^{x^{2}} y\right)=5 e^{x^{2}} x \\
& \begin{array}{ll}
e^{x^{2}} y=\int 5 e^{x^{2}} x^{d x}=5 \int e^{x^{2}} x d x, & \text { let } u=x^{2} \\
\sqrt{x^{2}} \quad \begin{array}{ll}
\frac{5}{2} \int e^{u} d u & \\
e^{x^{2}} y=\frac{5 x}{2} e^{x^{2}}+c & d u=2 x d x \\
& \frac{1}{2} d u=x d x
\end{array}
\end{array} \\
& y=\frac{5}{2}+\frac{c}{e^{x^{2}}}
\end{aligned}
$$

Further Differential Equations - Particular Solutions
2. Find the particular solution for the differential equation

$$
x \frac{d y}{d x}-y=x^{2}
$$

given that $x=1$ when $y=0$
$I(x)=e^{\int(x) d x}$

$$
\begin{aligned}
& \frac{d y}{d x}-\frac{1}{x} y=x \\
& P(x)=-\frac{1}{x} \quad I(x)=e^{\int-\frac{1}{x} d x}=e^{\ln x^{-1}}=\frac{1}{x} \\
& \frac{1}{x} \frac{d y}{d x}-\frac{1}{x^{2}} y=1 \\
& \frac{d}{d x}\left(\frac{1}{x} y\right)=1 \\
& \frac{1}{x} y=\int 1 d x \\
& \frac{1}{x} y=x+c \\
& y=x^{2}+c x
\end{aligned}
$$

Second Order Differential Equations

These are equations of the form

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=f(x)
$$

where a, b and c are constants, $a \neq 0$ and $f(x)$ is a function of x only.
If $f(x)=0$, the differential equation is said to be homogeneous.

If $f(x) \neq 0$, the differential equation is said to be non-homogeneous.

Homogeneous $2 n d$ order differential equations

$\mathrm{am}^{2}+b m+c=0$ is known as the auxilliary equation and can be factorised to solve for m.

The nature of the roots can be found by using $b^{2}-4 a c$.

$$
\begin{array}{ll}
b^{2}-4 a c>0 & 2 \text { real roots } \quad y=A e^{m_{1} x}+B e^{m_{2} x} \\
b^{2}-4 a c=0 & 2 \text { equal roots } y=e^{m x}(A+B x) \\
b^{2}-4 a c<0 & 2 \text { complex roots } \quad y=e^{p x}(A \cos q x+B \sin q x)
\end{array}
$$

https://www.khanacademy.org/math/differential-equations

- For further reading on proofs!

When to use integration by parts:

- Always try substitution first.
- If neither factor is related to the derivative of the other, use integration by parts.

Homogeneous 2nd order differential equations

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0
$$

As these equations will involve a 2 nd derivative, the general solution will have 2 arbitary constants.

We find the general solution by considering a solution of the form $y=e^{m x}$

$$
\begin{gathered}
y=e^{m x} \quad \frac{d y}{d x}=m e^{m x} \quad \frac{d^{2} y}{d x^{2}}=m^{2} e^{m x} \\
a m^{2} e^{m x}+b m c^{m x}+c e^{m x}=0 \quad \div e^{m x} \text { on both } \\
a m^{2}+b m+c=0
\end{gathered}
$$

Homogeneous 2nd order differential equations

Examples:
Find the general solution of the $2 n d$ order differential equation

1. $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-8 y=0$

$m^{2}+2 m-8=0$
$(m+4 \times m-2)=0$
$m=-4, m=2$
General Solution: $y=A e^{-4 x}+B e^{2 x}$

Homogeneous and order differential equations

\qquad
Examples:
Find the general solution of the and order differential equation

```
2. \(\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=0\)
    \(m^{2}-6 m+9=0\)
    \((m-3)(m-3)=0\)
```


Homogeneous 2 nd order differential equations
Particular Solutions

Examples:
Find the particular solution of the second order differential equation

$$
\begin{aligned}
& m^{2}-4 m+3=0 \\
& \left(m-1 x_{m}-3\right)=0 \\
& m=1, m=3 \\
& \begin{array}{c}
1=A e^{0}+B e^{0} \\
1=A+B
\end{array} \\
& \begin{aligned}
\frac{d y}{d x} & =A e^{x}+3 B e^{x} \\
5 & =A e^{0}+3 B e^{0}
\end{aligned} \\
& \begin{array}{l}
\qquad \begin{array}{l}
5=A+3 B \\
1=A+B \\
4=2 B
\end{array} \quad A=2
\end{array}
\end{aligned}
$$

Homogeneous and order differential equations

Examples:
Find the general solution of the 2 nd order differential equation

```
3. \(\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+13 y=0\)
    \(m^{2}+4 m+13=0\)
\[
m=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-4 \pm \sqrt{16-52}}{2}=\frac{-4 \pm \sqrt{-36}}{2}
\]
\[
m=\frac{-4 \pm 6 i}{2}=\frac{p}{-2 \pm 3 i} \quad y=\underline{e^{-2 x}(A \cos 3 x+B \sin 3 x)}
\]
```

Homogeneous and order differential equations
Particular Solutions
Examples:
Find the particular solution of the second order differential equation

Non-Homogeneous Ind order differential equations
These are equations of the form

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=f(x)
$$

where a, b and c are constants and $f(x) \neq 0$.

$$
a \neq 0
$$

- First treat it as if it were homogeneous and equate to zero to find the complementary function.
- Find a particular integral y_{p} (it will be in a similar form to $f(x)$).
- General Solution $=$ Complementary Function + Particular Integral
$y=y_{c}+y_{p}$

Identifying the particular integral

- Linear, e.g. $f(x)=2 x+1 \quad y_{p}=a x+b$
- Quadratic, e.g. $f(x)=x^{2}-1 \quad y_{p}=a x^{2}+b x+c$
- e, e.g. $f(x)=4 e^{2 x} \quad y_{p}=A e^{2 x}$
- Trigonometric, e.g. $f(x)=2 \sin x+\cos x$
$y_{p}=a \sin x+b \cos x$
- or e.g. $f(x)=3 \sin 2 x$
$y_{p}=a \sin 2 x+b \cos 2 x$
include because $3 \sin 2 x=3 \sin 2 x+0 \cos 2 x$

Non-Homogeneous 2nd order differential equations
Examples:
Find the general solution of the $2 n d$ order differential equation

Non-Homogeneous 2nd order differential equations
Examples:
Find the general solution of the 2 nd order differential equation
3.
$\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-3 y=10 e^{2 x}$

$y_{c}: m^{2}+2 m-3=0$	$y p: p e^{2 x}$
$(m+3 x m-1)=0$	$\frac{d y}{d x}=2 p e^{2 x} \frac{d^{2} y}{d x^{2}}=4 p e^{2 x}$
$\frac{m=-3, m=1}{}$	$4 p e^{2 x}+2\left(2 p e^{2 x}\right)-3 p e^{2 x}=10 e^{2 x}$
$y_{c}: \underline{A e^{-3 x}+B e^{x}}$	$5 p e^{2 x}=10 e^{2 x}$
$y=A e^{-3 x}+B e^{x}+2 e^{2 x}$	

Non-Homogeneous 2nd order differential equations
Examples:
Find the general solution of the 2 nd order differential equation

Particular Solution Example:
Find the particular solution of the $2 n d$ order differential equation
$\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=e^{x}$

| given that when $x=0, y=2$ and $\frac{d y}{d x}=1$ |
| :--- | :--- |
| $y c: m^{2}-4 m+4=0$ |
| $(m-2 x m-2)=0$ |\(\quad \begin{gathered}y p: p e^{x}

m=2

y c: A e^{2 x}+B x e^{2 x}\end{gathered} \quad $$
\begin{gathered}\frac{d y}{d x}=p e^{x} \quad \frac{d^{2} y}{d x^{2}}=p e^{x} \\
y=A e^{2 x}+B x e^{2 x}+e^{x}\end{gathered}
$$ \quad $$
\begin{gathered}p e^{x}-4 p e^{x}+4 p e^{x}=e^{x} \\
p e^{x}=e^{x} \\
p=1\end{gathered}
$$\)

$y=e^{-2 x e}+e$
$y=e^{2 x}(1-2 x)+e^{x}$

Examples:
2. Find the general solution of the 2 nd order differential equation

$$
\begin{aligned}
& 16 p x^{2} e^{4 x}+16 p x e^{4 x}+2 p e^{4 x}-32 p x^{2} e^{4 x}-16 p x e^{4 x}+16 p x^{2} e^{4 x} \\
& 2 p e^{4 x}=6 e^{4 x} \quad=6 e^{4 x} \\
& \begin{aligned}
2 p e^{4 x} & =6 e^{4 x} \\
p & =3
\end{aligned}
\end{aligned}
$$

Ammending particular integrals
In some cases, the particular integral will already be part of the complementary function. You will then need to ammend it.

Examples:

Ammending Particular Integrals
Examples:
3. Find the general solution of the 2 nd order differential equation

