AH Differentiation-First prinicples, exponential ,logs, product, chain, quotient rallexe. $\mathbf{2 6 , t} \mathbf{2 0 6 6} \mathbf{k}$

Differentiating from first principles
Recall that the derivative of a function is the gradient of the tangent to the function at that point.

Given $P(x, f(x))$ and $Q(x+h, f(x+h))$
$m_{P Q}=\frac{f(x+h)-f(x)}{h}$ therefore as h tends to $0, m_{P Q}=f^{\prime}(x)$

We can differentiate any function by first principles.

Differentiating from first principles
Example:

$$
\begin{aligned}
& \begin{array}{l}
f(x)=2 x^{2} \\
f(x+h)=2(x+h)^{2} \\
2\left(x^{2}+2 x h+h^{e}\right)=2 x^{2}+4 x h+2 h^{2}
\end{array} \\
& \begin{aligned}
f(x+h)-f(x) \Rightarrow 2 x^{2} & +4 x h+2 h^{2}-2 x^{2} \\
& =4 x h+2 h^{2}
\end{aligned} \\
& =4 x h+2 h^{2} \\
& \frac{f(x+h)-f(x)}{h}=\frac{4 x h+2 h^{2}}{h}=4 x+2 h \\
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} 4 x+2 h=4 x
\end{aligned}
$$

Differentiate the following using the Chain Rule:

$$
\begin{aligned}
& \text { 1. }(3 x-1)^{3} \\
& =3(3 x-1)^{2}(3) \\
& 9(3 x-1)^{2} \\
& \text { 2. } 5 \cos 3 x \\
& -15 \sin 3 x \\
& \text { 3. }\left(2 x^{2}-4\right)^{-5} \\
& -5\left(2 x^{2}-4\right)^{-6}(4 x) \\
& -20 x\left(2 x^{2}-4\right)^{-6}
\end{aligned}
$$

Differentiating from first principles

Differentiation - Recap. of the Chain Rule

$$
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}
$$

When differentiating using the chain rule, you are deriving the function and then multiplying by the derivative of the function within the function.

Examples: Differentiate
$y=(2+x)^{2} \quad y=3 \sin 2 x \quad f(x)=2\left(2 x^{2}+4\right)^{3}$

AH Differentiation-First prinicples, exponentials,logs, product, chain, quotient rallexe. 26,te060k

Differentiating e^{x}

Remember that $\ln x$ and e^{x} are inverse functions.
Therefore $e^{\ln x}=x$ and $\ln \left(e^{x}\right)=x$
$f^{-1}(f(x))=x$

$$
\begin{aligned}
& \text { Let } y=\log _{e^{x}} \\
& \qquad \begin{array}{l}
x=e^{y} \\
d x / d y=e^{y} \\
d y / d x=\frac{1}{e^{4}}=\frac{1}{x} \\
d / d x \log _{e} x=\frac{1}{x}
\end{array}
\end{aligned}
$$

Differentiating e^{x}
Given $f(x)=e^{x}$ then $f^{\prime}(x)=e^{x}$
We differentiate exponential functions using the chain rule.

Examples: Differentiate the following

Differentiating $\log _{2} \underline{x}$ or $\ln x$
We differentiate the natural log using the chain rule also.
Examples: Differentiate the following
(a) $y=\ln 7 x$
(b) $y=\ln (3 x-1)$

$$
\begin{aligned}
d y / d x & =\frac{1}{7 x} \cdot 7 \\
& =\frac{1}{x} \\
\text { (c) } f(x) & =\ln \left(5 x^{2}-6\right)
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{5 x^{2}-6} \cdot 10 x \\
& =\frac{10 x}{5 x^{2}-6}
\end{aligned}
$$

$d y / d x=\frac{1}{3 x-1} \cdot 3$
$=\frac{3}{3 x-1}$
(d) $y=\ln (\cos 4 x)$
$\begin{aligned}(d) y & =\ln (\cos 4 x) \\ d y / d x & =\frac{1}{\cos 4 x} \cdot-4 \sin 4 x \\ & =-\frac{4 \sin 4 x}{\cos 4 x} \\ & =-4 \tan 4 x\end{aligned}$

Differentiating $\log _{2} x$ or $\ln x$

$$
\begin{aligned}
\text { (f) } y & =\ln \left(\frac{\sqrt{x^{2}+1}}{(9 x-4)^{2}}\right)=\ln \left(x^{2}+1\right)^{\frac{1}{2}}-\ln (9 x-4)^{2} \\
\frac{d y}{d x} & =\frac{1}{\sqrt{x^{2}+1}} \cdot \frac{1}{2}\left(x^{2}+1\right)^{-1 / 2}(2 x)-\frac{1}{(9 x-4)^{2}} \cdot 2(9 x-4)(9) \\
& =\frac{x}{x^{2}+1}-\frac{18(9 x-4)}{(9 x-4)^{2}}
\end{aligned}
$$

Differentiating $\log x$ or $\ln x$

$$
\text { (e) } \begin{aligned}
y & =\ln \left(\frac{2 x+1}{x-1}\right) \\
y & =\ln (2 x+1)-\ln (x-1) \\
d y / d x & =\frac{1}{2 x+1} \cdot 2-\frac{1}{x-1} \cdot 1 \\
& =\frac{2}{2 x+1}-\frac{1}{x-1} \\
& =\frac{2 x-2-2 x-1}{(2 x+1)(x-1)}=\frac{-3}{(2 x+1)(x-1)}
\end{aligned}
$$

AH Differentiation-First prinicples, exponentials,logs, product, chain, quotient rulleze.26,te067k

The Product Rule
Given two functions $u(x)$ and $v(x)$ where $f(x)=u(x)$.v(x) then
$f^{\prime}(x)-n \frac{d v}{d x}+v \frac{d u}{d x}$
First by the derivative of the second + second by the derivative of the
first.

Proof:
Let $f(x)=u(x), v(x)$
$f(x+h)=u(x+h) \cdot v(x+h)$
$f(x+h) \cdot f(x)=u(x+h) \cdot v(x+h)-u(x) \cdot v(x)$
$u(x+h) \cdot v(x+h)+v(x+h) \cdot v(x)-u(x+h) \cdot v(x)$
$u(x+h)[v(x+h)-v(x)]+v(x)[u(x+h)-u(x)]$
$\frac{f(x+h)-f(x)}{h}=\frac{u(x+h)[v(x+h)-v(x)]}{h}+\frac{v(x)[u(x+h)-u(x)]}{h}$
$\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{u(x+h[v(x+h) \cdot v(x)]}{h}+\lim _{h \rightarrow 0} \frac{v(x)|(x+h)-v h|}{h}$
$f(x)=\frac{u \frac{d v}{d x}+\frac{d u}{d x}}{d x}$

The Product Rule
2. $y=x^{3} \sin x$

$$
\begin{aligned}
d y / d x= & x^{3} \cos x+\sin x\left(3 x^{2}\right) \\
= & x^{3} \cos x+3 x^{2} \sin x \\
& x^{2}(x \cos x+3 \sin x)
\end{aligned}
$$

The Product Rule
4. $y=x^{4} \cos 2 x$

$$
\begin{aligned}
d y / d x & =x^{4}(-2 \sin 2 x)+\cos 2 x\left(4 x^{3}\right) \\
& =-3 x^{4} \sin 2 x+4 x^{3} \cos 2 x \\
& =2 x^{3}(2 \cos 2 x-x \sin 2 x)
\end{aligned}
$$

The Product Rule

Examples: Differentiate the following

$$
\begin{aligned}
& \text { 1. } y=(1-x)^{3}(3 x+1)^{2} \\
& \begin{aligned}
& d y / d x=(1-x)^{3} 2(3 x+1)(3)+(3 x+1)^{2} 3(1-x)^{2}(-1) \\
&=6(3 x+1)(1-x)^{3}-3(1-x)^{2}(3 x+1)^{2} \\
& 3(3 x+1)(1-x)^{2}[2(1-x)-(3 x+1)] \\
& 3(3 x+1)(1-x)^{2}[2-2 x-3 x-1] \\
& 3(3 x+1)(1-x)^{2}(1-5 x) \\
& 3(1-5 x)(3 x+1)(1-x)^{2}
\end{aligned}
\end{aligned}
$$

The Product Rule
3. Given $f(x)=\cos 2 x \cos 4 x$, show that $f^{\prime}(x)=2 \sin 2 x\left(1-6 \cos ^{2} 2 x\right)$

$$
\begin{gathered}
f^{\prime}(x)=\cos 2 x(4 \sin 4 x)+\cos 4 x(-2 \sin 2 x) \\
=-4 \cos 2 x \sin 4 x-2 \cos 4 x \sin 2 x \\
-4 \cos 2 x[2 \sin 2 x \cos 2 x]-2 \cos 4 x \sin 2 x \\
-8 \cos ^{2} 2 x \sin 2 x-2 \cos 4 x \sin 2 x \\
2 \sin 2 x\left[-4 \cos ^{2} 2 x-\cos 4 x\right] \\
2 \sin 2 x\left[-4 \cos ^{2} 2 x-\left[2 \cos ^{2} 2 x-1\right]\right] \\
2 \sin 2 x\left[-6 \cos ^{2} 2 x+1\right] \\
2 \sin 2 x\left[1-6 \cos ^{2} 2 x\right] \\
\text { as required. }
\end{gathered}
$$

The Product Rule

$$
\text { 5. } \begin{aligned}
y & =x^{2} \sqrt{x^{2}+1} \\
y & =x^{2}\left(x^{2}+1\right)^{\frac{1}{2}} \\
d y / d x & =x^{2}\left(\frac{1}{2}\left(x^{2}+1\right)^{-\frac{1}{2}}(2 x)\right)+\left(x^{2}+1\right)^{\frac{1}{2}}(2 x) \\
& =x^{3}\left(x^{2}+1\right)^{-\frac{1}{2}}+2 x\left(x^{2}+1\right)^{\frac{1}{2}} \\
& =\frac{x^{3}}{\sqrt{x^{2}+1}}+2 x \sqrt{x^{2}+1} \\
& =\frac{x^{3}+2 x\left(x^{2}+1\right)}{\sqrt{x^{2}+1}}=\frac{3 x^{3}+2 x}{\sqrt{x^{2}+1}}=\frac{x\left(3 x^{2}+2\right)}{\sqrt{x^{2}+1}}
\end{aligned}
$$

AH Differentiation-First prinicples, exponentials,logs, product, chain, quotient rulleze.26,te060kk

Starter
Find the derivative

1. $y=x \sin \left(x^{2}\right)$
$d y / d x=x\left[2 x \cos \left(x^{2}\right)\right]+\sin \left(x^{2}\right)(1)$
$=2 x^{2} \cos \left(x^{2}\right)+\sin \left(x^{2}\right)$
滑

$$
\begin{aligned}
& x^{2}(\cos x)^{4} \\
& \text { 2. } y=x^{2} \cos ^{4} x \\
& \left.d y / d x=x^{2}\left[4(\cos x)^{3}-\sin x\right)\right] \\
& \quad+\cos ^{4} x(2 x) \\
& =-4 x^{2} \cos ^{3} x \sin x+2 x \cos ^{4} x \\
& -2 x \cos ^{3} x(2 \operatorname{sen} x-\cos x)
\end{aligned}
$$

The Product Rule
6. $y=e^{x} \sin 2 x$
$d y / d x=e^{x}(2 \cos 2 x)+\sin 2 x\left(e^{x}\right)$
$=e^{x}[2 \cos 2 x+\sin 2 x]$

Using the Product Rule to differentiate Logs with other bases
Given $y=\log _{10} x$

$$
\begin{aligned}
x & =10^{y} \\
\ln x & =\ln 10^{y} \\
\ln x & =y \ln 10 \\
y & =\frac{\ln x}{\ln 10}=\frac{1}{\ln 10} \cdot \ln x \\
d y / d x & =\frac{1}{\ln 0} \cdot\left(\frac{1}{x}\right)+\ln x(0) \\
& =\frac{1}{x \ln 10}
\end{aligned}
$$

(1) $x^{4}\left(2 x^{3}+1\right)^{5}=y$
(2) Find $f^{\prime}\left(\frac{\pi}{3}\right)$ given $f(x)=\cos x \sin ^{2} x$
$f^{\prime}(x)$

AH Differentiation-First prinicples, exponentials,logs, product, chain, quotient rulleze.26,te067k

The Quotient Rule
This rule allows us to differentiate functions of the form $f(x)=\frac{u(x)}{v(x)}$

Bottom by the derivative of the top - top by the derivative of the
bottom all over the bottom squared
Proof: If $f(x)=\frac{u(x)}{v(x)}$ then $f(x)=u(x)[v(x)]^{-1}$
Therefore $f^{\prime}(x)=u^{\prime}(x) \cdot-[(x)]^{-2} \cdot v^{\prime 2}(x)+[v(x)]^{-1} u^{\prime}(x)$
$=-\frac{u(x) y^{\prime}(x)}{[v(x)]^{2}}+\frac{u^{\prime}(x)}{v(x)}$
$=\frac{-u(x) v^{\prime}(x)+u^{\prime}(x) v(x)}{(v(x)]^{2}}$
$=v(x) u^{\prime}(x)-u(x) v^{\prime}(x)$ $[v(x)]^{2}$

The Quotient Rule
Examples:
2. $y=\frac{\left(x^{2}+1\right)^{4}}{x^{3}}$

$$
d y / d x=\frac{x^{3}\left[4\left(x^{2}+1\right)^{3}(2 x)\right]-\left(x^{2}+1\right)^{4}\left(3 x^{2}\right)}{x^{6}}
$$

$$
=\frac{8 x^{4}\left(x^{2}+1\right)^{3}-3 x^{2}\left(x^{2}+1\right)^{4}}{x^{6}}
$$

$=\frac{x^{2}\left(x^{2}+1\right)^{3}\left[8 x^{2}-3\left(x^{2}+1\right)\right]}{x^{6}}$
$=\frac{7 y^{2}\left(x^{2}+1\right)^{3}\left(5 x^{2}-3\right)}{x^{44}}$
$=\frac{\left(x^{2}+1\right)^{3}\left(5 x^{2}-3\right)}{x^{4}}$

The Quotient Rule

Examples:
4. $y=\frac{\cos x}{\sin ^{2} x}$

$$
\begin{aligned}
d y / d x & =\frac{\sin ^{2} x(-\sin x)-\cos x(2 \sin x \cos x)}{\sin ^{4} x} \\
& =-\frac{\sin ^{3} x-2 \sin x \cos ^{2} x}{\sin ^{4} x}=\frac{\sin x\left(-\sin ^{2} x-2 \cos ^{2} x\right)}{\sin ^{4} x} \\
& =\frac{-\sin ^{2} x-2 \cos ^{2} x}{\sin ^{3} x}=-\frac{\sin ^{2} x-2\left(1-\sin ^{2} x\right)}{\sin ^{3} x}=\frac{\sin ^{2} x-2}{\sin ^{3} x}
\end{aligned}
$$

The Quotient Rule
Examples:

1. $\frac{2 x}{x^{2}+1}=y$
$d y / d x=\frac{\left(x^{2}+1\right)(2)-2 x(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{2 x^{2}+2-4 x^{2}}{\left(x^{2}+1\right)^{2}}$
$=\frac{2-2 x^{2}}{\left(x^{2}+1\right)^{2}}=\frac{2\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{2}}$

The Quotient Rule
Examples:
3. $y=\frac{\sin x}{x^{3}}$
$d y / d x=\frac{x^{3}(\cos x)-\sin x\left(3 x^{2}\right)}{x^{6}}=\frac{x^{3} \cos x-3 x^{2} \sin x}{x^{6}}$
$=\frac{x^{2}(x \cos x-3 \sin x)}{x^{6}}=\frac{x \cos x-3 \sin x}{x^{4}}$

The Quotient Rule
Examples:

$$
\text { 5. } y=\frac{x^{2}}{\sqrt{(x+4)^{3}}}=\frac{x^{2}}{(x+4)^{\frac{3}{2}}}
$$

$$
d y / d x=(2 x+4)^{\frac{3}{2}} \frac{(2 x)-x^{2}\left(\frac{3}{2}(x+4)^{\frac{1}{2}}\right)}{(x+4)^{3}}=\frac{2 x(x+4)^{\frac{3}{2}}-\frac{3 x^{2}}{2}(x+4)^{\frac{1}{2}}}{(x+4)^{3}}
$$

$$
=\frac{x(x+4)^{\frac{1}{2}}\left[2(x+4)-\frac{3 x}{2}\right]}{(x+4)^{3}}=\frac{x(x+4)^{\frac{1}{2}}\left[\frac{1}{2} x+8\right)}{(x+4)^{3} x(x+4)^{\frac{1}{2}}}
$$

$$
=\frac{x\left(\frac{1}{2} x+8\right)}{(x+4)^{5 / 2}}
$$

$$
=\frac{x(x+16)}{2(x+4)^{3 / 2}}
$$

AH Differentiation-First prinicples, exponentials,logs, product, chain, quotient rallerse.26,te060k

$$
\begin{aligned}
& \text { The Quotient Rule } \\
& \text { Examples: } \\
& \qquad \begin{aligned}
& y=\frac{x^{2}}{e^{2 x}} \\
& d y / d x=\frac{e^{2 x}(2 x)-x^{2}\left(2 e^{2 x}\right)}{\left(e^{2 x}\right)^{2}}=\frac{2 x e^{2 x}-2 x^{2} e^{2 x}}{e^{4 x}} \\
&=\frac{2 x e^{2 x}(1-x)}{e^{4 x}}=\frac{2 x(1-x)}{e^{2 x}}
\end{aligned}
\end{aligned}
$$

