November 24, 2017

Starter	2.11.2017
(a) Differentiate $y = x \tan^{-1} 2x$.	3
(b) Given $f(x) = \frac{1-x^2}{1+4x^2}$, find $f'(x)$, simplifying your answer.	3
(c) A curve is given by the parametric equations	
$x=6t$ and $y=1-\cos t$.	
Find $\frac{dy}{dx}$ in terms of <i>t</i> .	2

Recap. of Integration

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + C \qquad n \neq -1$$

$$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{(n+1)(a)} + C \qquad n \neq -1$$

Recap. of Integration
Examples:
1.
$$\int \frac{3x^2 - 1}{\sqrt{x}} dx = \int \frac{3x^2 - 1}{x^{\frac{1}{4}}} dx = \int \frac{3x^2}{x^{\frac{1}{4}}} - \frac{1}{x^{\frac{1}{4}}} dx$$

 $= \int \beta x^{\frac{3}{2}} - x^{-\frac{1}{2}} dx$
 $= \frac{3x^{\frac{5}{2}}}{\frac{5}{2}} - \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + C$
 $\frac{6x^{\frac{5}{4}}}{5} - 2x^{\frac{1}{4}} + C$

Recap. of Integration
Examples:
$2. \int (2x+3)^3 dx$
$= \frac{(\partial x + 3)^{b}}{b(\alpha)} + C$
$= \frac{(\lambda x + 3)^6}{1\lambda} + C$

Integrating exponential functions

 $\int e^x dx = e^x + C$

$$\int e^{ax+b} dx = \frac{1}{a} e^{ax+b} + C$$

(This rule only applies to exponents with linear functions as powers)

November 24, 2017

<u>Integrating exponential functions</u> Examples:

$$\int 6e^{3x} + 4e^{-x} dx$$

= $6\left(\frac{1}{3}\right)e^{3x} + 4\left(\frac{1}{-1}\right)e^{-x} + C$
 $2e^{3x} - 4e^{-x} + C$

Integrating exponential functions

Examples:
^{2.}
$$\int \frac{8}{e^{2x}} dx = \int 8e^{-2x} dx$$

$$= 8(\frac{1}{-2})e^{-2x} + C = -\frac{4}{4}e^{-2x} + C$$

Integrating exponential functions
Examples:
3.
$$\int (e^{x} + \frac{1}{e^{x}})^{2} dx = \int e^{2x} + 2 + \frac{1}{e^{2x}} dx$$

$$\int e^{3x} + 2 + e^{-2x} dx$$

$$= \frac{1}{2}e^{2x} + 2x - \frac{1}{2}e^{-2x} + C$$

$$= \frac{1}{2}e^{2x} + 2x - \frac{1}{2}e^{2x} + C$$

Integrating exponential functions Examples: 4. Find the exact value of $\int_{0}^{1} \frac{(e^{2x} - 1)^{2}}{e^{x}} dx = \int_{0}^{1} \frac{e^{4x} - 2e^{3x} + 1}{e^{x}} dx$ $= \int_{0}^{1} e^{3x} - 3e^{x} + e^{-x} dx$

$$\begin{bmatrix} \frac{1}{3}e^{3x} - \partial e^{x} - e^{-x} \end{bmatrix}_{0}^{1} = \begin{bmatrix} \frac{1}{3}e^{3} - \lambda e - e^{-1} \end{bmatrix} - \begin{bmatrix} \frac{1}{3}e^{2} - \lambda e^{2} - e^{-1} \end{bmatrix}$$
$$= \frac{1}{3}e^{3} - \partial e - \frac{1}{2}e^{-1} + \partial e^{-1} + \partial e^{-$$

Recall $\frac{d}{dx}\ln x = \frac{1}{x}$ x > 0 neccessary as lnx only defined when x > 0

$$\int \frac{1}{x} dx = \ln |x| + C$$
$$\int \frac{1}{ax+b} = \frac{1}{a} \ln |ax+b| + C$$

Using logs in integration Using logs in integration Examples: Examples: $\int \frac{8}{2x+1} dx$ 2. $\int \left(\frac{2}{x} + \frac{4}{6x+1} - \frac{6}{1-3x}\right) dx$ = $8(\frac{1}{2}) ln |ax+1| + C$ = $2 \ln |x| + 4(\frac{1}{2}) \ln |6x+1| - 6(-\frac{1}{3}) \ln |1-3x| + C$ 4 ln |2x+1| + C 26/x1 + 3 6/6x+11 + 26/1-3x1+C

 $\int_{-\infty}^{1} \left(\frac{1}{2x+l} + \frac{l}{4x+l} \right) dx$ $= \left[\frac{1}{2} l_{1} | 2x + l| + \frac{1}{4} l_{1} | 4x + l \right]_{0}^{1}$ $= \left[\frac{1}{2}h_3 + \frac{1}{4}h_5 \right] - \left[\frac{1}{2}h_1 + \frac{1}{4}h_1 \right]$ $= \frac{1}{2} k_{3} + \frac{1}{4} k_{5} - \frac{3}{4} k_{1}$ $= \frac{1}{2} k_{3} + \frac{1}{4} k_{5} - k_{1}$ $= \frac{1}{2} k_{3} + \frac{1}{4} k_{5}$ $\frac{2 k_{3} + k_{5}}{4} = k_{1} - \frac{k_{1}}{4} = \frac{k_{1}}{4}$

Integrating trigonometric functions $\int \sin(ax+b)dx = -\frac{1}{a}\cos(ax+b) + C$

Recall:

 $\int \cos(ax+b)dx = \frac{1}{a}\sin(ax+b) + C$

we now also can say

 $\int \sec^2(ax+b)dx = \frac{1}{a}\tan(ax+b) + C$

Note: Integrating sin²x and cos²x requires trigonometric identities: $sin²x = \frac{1}{2}(1 - \cos 2x) \qquad \cos^{2}x = \frac{1}{2}(1 + \cos 2x)$

Integrating trigonometric functions

Examples:

1. $\int (3\cos x - 4\sin 2x) dx$

3 sinx - 4 (===) cos 2x + C 3sinx + 2cos2x + C

Integrating trigonometric functions Integrating trigonometric functions Examples: Examples: 2. 6sec² 4xdx 3. Show that $\int_{0}^{\frac{\pi}{6}} (\sin 2x + \sec^2 x) dx = \frac{4\sqrt{3} + 3}{12}$ $=\frac{6}{4}\tan 4x + C$ = = = tan 4x + C $= \left[-\frac{1}{2} \cos 2x + \tan x \right]_{0}^{\frac{1}{2}}$ $= \left[-\frac{1}{2}\cos\frac{\pi}{3} + \tan\frac{\pi}{6} \right] - \left[-\frac{1}{2}\cos \Theta + \tan \Theta \right]$ $= \left[-\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{\sqrt{3}} \right] - \left[-\frac{1}{2} \right]$ $= -\frac{1}{4} + \frac{1}{\sqrt{3}} + \frac{1}{2} = -\frac{1}{4} + \frac{15}{3} = -\frac{3}{12} + \frac{415}{12} = \frac{3+4\sqrt{3}}{12}$ as required

Integrating trigonometric functions

Some functions require simplifying first.

Examples:

Example 4. Evaluate f sin³ x cos ec² x dx