Starter	2.11 .2017
(a) Differentiate $y=x \tan ^{-1} 2 x$.	3
(b) Given $f(x)=\frac{1-x^{2}}{1+4 x^{2}}$, find $f^{\prime}(x)$, simplifying your answer.	3
(c) A curve is given by the parametric equations	
$x=6 t$ and $y=1-\cos t$.	
Find $\frac{d y}{d x}$ in terms of t.	2

\qquad

$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C \quad n \neq-1
$$

$$
\int(a x+b)^{n} d x=\frac{(a x+b)^{n+1}}{(n+1)(a)}+C \quad n \neq-1
$$

Recap. of Integration
Examples:

1. $\int \frac{3 x^{2}-1}{\sqrt{x}} d x=\int \frac{3 x^{2}-1}{x^{\frac{1}{2}}} d x=\int \frac{3 x^{2}}{x^{\frac{1}{2}}}-\frac{1}{x^{\frac{1}{2}}} d x$
$=\int\left(3 x^{\frac{3}{2}}-x^{-\frac{1}{2}}\right) d x$
$=\frac{3 x^{\frac{5}{2}}}{\frac{5}{2}}-\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+c$
$\frac{6 x^{\frac{5}{2}}}{5}-2 x^{\frac{1}{2}}+C$
```
Recap. of Integration
Examples:
2. \(\int(2 x+3)^{5} d x\)
    \(=\frac{(2 x+3)^{6}}{6(2)}+c\)
    \(=\frac{(2 x+3)^{6}}{12}+c\)
```

$$
\int e^{\alpha+h} d x=\frac{1}{a} e^{e x+b}+C
$$

(This rule only applies to exponents with linear functions as powers)

Integrating exponential functions
Examples:
$\int 6 e^{3 x}+4 e^{-x} d x$

$$
\begin{gathered}
=6\left(\frac{1}{3}\right) e^{3 x}+4\left(\frac{1}{-1}\right) e^{-x}+C \\
2 e^{3 x}-4 e^{-x}+C
\end{gathered}
$$

Integrating exponential functions

Examples:
3. $\int\left(e^{x}+\frac{1}{e^{x}}\right)^{2} d x=\int e^{2 x}+2+\frac{1}{e^{2 x}} d x$
$\int e^{2 x}+2+e^{-2 x} d x$
$=\frac{7}{2} e^{2 x}+2 x-\frac{1}{2} e^{-2 x}+C$
$=\frac{1}{2} e^{2 x}+2 x-\frac{1}{2 e^{2 x}}+C$

Starter

Given $f(x)=\frac{x-1}{1+x^{2}}$, show that $f^{\prime}(x)=\frac{1+2 x-x^{2}}{\left(1+x^{2}\right)^{2}}$.

Integrating exponential functions
Examples:
$\int \frac{8}{e^{2 x}} d x=\int 8 e^{-2 x} d x$
$=8\left(\frac{1}{-2}\right) e^{-2 x}+C=-4 e^{-2 x}+C$
U sing logs in integration

$$
\text { Recall } \quad \frac{d}{d x} \ln x=\frac{1}{x}
$$

$$
\begin{gathered}
\int \frac{1}{x} d x=\ln |x|+C \\
\int \frac{1}{a x+b}=\frac{1}{a} \ln |a x+b|+C
\end{gathered}
$$

Using logs in integration
Examples:

1. $\int \frac{8}{2 x+1} d x$
$=8\left(\frac{1}{2}\right) \ln |2 x+1|+C$ $4 \ln |2 x+1|+C$

Using logs in integration
Examples:
3. Show that $\int_{2}^{14} \frac{1}{2 x-1} d x=\ln 3$
$=\left[\frac{1}{2} \ln |2 x-1|\right]_{2}^{14}$
$=\left[\frac{1}{2} \ln 27\right]-\left[\frac{1}{2} \ln 3\right]=\frac{1}{2}[\ln 27-\ln 3]$ $\frac{1}{2} \ln \frac{27}{3}=\frac{1}{2} \ln 9=\ln 9^{\frac{1}{2}}=\ln 3$ as required.

Using logs in integration
Examples:
2. $\int\left(\frac{2}{x}+\frac{4}{6 x+1}-\frac{6}{1-3 x}\right) d x$
$=2 \ln |x|+4\left(\frac{1}{6}\right) \ln |6 x+1|-6\left(-\frac{1}{3}\right) \ln |1-3 x|+C$ $2 \ln |x|+\frac{2}{3} \ln |6 x+1|+2 \ln |1-3 x|+C$

$$
\begin{aligned}
& \int_{0}^{1}\left(\frac{1}{2 x+1}+\frac{1}{4 x+1}\right) d x \\
&= {\left[\left.\frac{1}{2} \ln |2 x+1|+\frac{1}{4} \ln \right\rvert\, 4 x+1\right]_{0}^{1} } \\
&= {\left[\frac{1}{2} \ln 3+\frac{1}{4} \ln 5\right]-\left[\frac{1}{2} \ln \left|+\frac{1}{4} \ln \right|\right] } \\
&= \frac{1}{2} \ln 3+\frac{1}{4} \ln 5-\frac{3}{4} \ln 1 \\
&= \frac{1}{2} \ln 3+\frac{1}{4} \ln 5-\ln 1 \\
&= \frac{1}{2} \ln 3+\frac{1}{4} \ln 5 \\
& \frac{2 \ln 3+\ln 5}{4}=\frac{\ln 9+\ln 5}{4}=\ln 45 \\
& 4
\end{aligned}
$$

Integrating trigonometric functions

Examples:

1. $\int(3 \cos x-4 \sin 2 x) d x$

$$
\begin{gathered}
3 \sin x-4\left(-\frac{1}{2}\right) \cos 2 x+C \\
3 \sin x+2 \cos 2 x+C
\end{gathered}
$$

Note: Integrating $\sin ^{2} x$ and $\cos ^{2} x$ requires trigonometric identities:

$$
\sin ^{2} x=\frac{1}{2}(1-\cos 2 x) \quad \cos ^{2} x=\frac{1}{2}(1+\cos 2 x)
$$

Integrating trigonometric functions
Examples:
2. $\int 6 \sec ^{2} 4 x d x$
$=\frac{6}{4} \tan 4 x+C$
$=\frac{3}{2} \tan 4 x+C$

Integrating trigonometric functions
Examples:
3. Show that

$$
\int_{0}^{\frac{\pi}{6}}\left(\sin 2 x+\sec ^{2} x\right) d x=\frac{4 \sqrt{3}+3}{12}
$$

$=\left[-\frac{1}{2} \cos 2 x+\tan x\right]_{0}^{\frac{\pi}{6}}$

$$
=\left[-\frac{1}{2} \cos \frac{\pi}{3}+\tan \frac{\pi}{6}\right]-\left[-\frac{1}{2} \cos 0+\tan 0\right]
$$

$$
=\left[-\frac{1}{2}\left(\frac{1}{2}\right)+\frac{1}{\sqrt{3}}\right]-\left[-\frac{1}{2}\right]
$$

$$
=-\frac{1}{4}+\frac{1}{\sqrt{3}}+\frac{1}{2}=\frac{1}{4}+\frac{\sqrt{3}}{3}=\frac{3}{12}+\frac{4 \sqrt{3}}{12}=\frac{3+4 \sqrt{3}}{12} \text { as required }
$$

Integrating trigonometric functions
Some functions require simplifying first.
Examples:
4. Evaluate

$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \sin ^{3} x \operatorname{cosec}^{2} x d x$

