Related Rates of Change
This topic is another application of the chain rule. We can solve problems in context with more than two variables. Given that y is a function of x and that x and y are both functions of u, the chain rule states that

$$
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}
$$

Examples:

1. The radius of a circular ripple is increasing at a rate of 30 cm per second. How fast is the area increasing when the radius is 50 cm ?

$$
\begin{gathered}
\frac{d A}{d t}=\frac{d R}{d t} \times \frac{d A}{d R} \\
\begin{array}{ll}
\frac{d R}{d t}=30 \quad \frac{d A}{d R}=2 \pi r & A=\pi r^{2} \\
\frac{d A}{d t}=30 \times 2 \pi r & =60 \pi r \\
\text { when }=50 \\
\frac{d A}{d t}=20 \mathrm{r} \times 50=3000 \pi \mathrm{ram}^{2} / \mathrm{sec}
\end{array}
\end{gathered}
$$

Related Rates of Change
3. A cube has edge of length xcm and is expanding as time passes. If the length of the edge is increasing at $1 \mathrm{~cm} / \mathrm{sec}$, how fast is the volume changing when the edge length is 20 cm ?

$$
\begin{array}{lr}
\frac{d V}{d t}=\frac{d L}{d t} \times \frac{d V}{d L} & \text { Volume }=L^{3} \\
\frac{d L}{d t}=1 & \frac{d V}{d L}=3 L^{2} \\
\frac{d V}{d t}=1 \times 3 L^{2}=3 \times 20^{2}=1200 \mathrm{~cm}^{3} / \mathrm{sec} .
\end{array}
$$

Related Rates of Change
5.

The height of a cube is increasing at the rate of $5 \mathrm{~cm} \mathrm{~s}^{-1}$.
Find the rate of increase of the volume when the height of the cube is 3 cm .

$$
\begin{aligned}
& \frac{d V}{d t}=\frac{d h}{d t} \times \frac{d V}{d h} \quad \begin{array}{l}
V=h^{3} \\
\frac{d h}{d t}=5 \\
\frac{d V}{d h}=3 h^{2} \\
\frac{d V}{d t}=5 \times 3 h^{2}=15 h^{2} \\
\text { at } h=3 \Rightarrow 15 \times 9=135 \mathrm{~m}^{3} \mathrm{~s}^{-1}
\end{array}
\end{aligned}
$$

Related Rates of Change
2. The volume of a spherical balloon is increasing at a rate of $0.05 \mathrm{~m}^{3} / \mathrm{s}$. How fast is the surface area increasing when the radius is 0.04 m ?

Volume sphere $=\frac{4}{3} \pi r^{3} \quad$ Surface Area $=4 \pi r^{2}$

$$
\begin{aligned}
& \frac{d A}{d t}=\frac{d V}{d t} \times \frac{d A}{d r} \times \frac{d r}{d V} \\
& \frac{d V}{d t}=0.05 \quad \frac{d A}{d r}=8 \pi r \\
& V=\frac{4}{3} \pi r^{3} \\
& \frac{d A}{d t}=0.05 \times 8 \pi r \times \frac{1}{4 \pi r^{2}} \\
& =\frac{0.1}{r} \quad \text { at } r=0.04 \\
& \frac{d A}{d t}-\frac{0.1}{0.04}=2.5 \mathrm{~m}^{2} / \mathrm{scosen} d
\end{aligned}
$$

Related Rates of Change
4.

A spherical balloon is being inflated. When the radius is 10 cm the surface area is increasing at a rate of $120 \pi \mathrm{~cm}^{2} \mathrm{~s}^{-1}$.
Find the rate at which the volume is increasing at this moment.
(Volume of sphere $=\frac{4}{3} \pi r^{3}$, surface area $=4 \pi r^{2}$)

$$
\frac{d V}{d t}=\frac{d V}{d r} \times \frac{d r}{d A} \times \frac{d A}{d t}
$$

$\begin{array}{lll}V=\frac{4}{3} r^{3} & A \cdot 4 \pi r^{2} \\ \frac{d V}{d r=4 r r^{2}} & \frac{d A}{d r}=80 r \\ \frac{d r}{d t}=\frac{1}{d t}=120 \pi\end{array}$

$$
\begin{aligned}
& \frac{d V}{d t}=4 \pi r^{2} \times \frac{1}{8 m} \times 120 \pi \\
& =600^{3} \times \mathrm{co}^{3} \mathrm{sec} \\
& =10 \Rightarrow 600 \mathrm{rcm} s^{3} \mathrm{~s}^{-1}
\end{aligned}
$$

