Parametric Equations

A parameter is a quantity that influences the behaviour of a function.
They are like variables but are held constant for use in a function
Varying the parameter gives you a family of functions.

We can express both x and y in terms of a parameter
The parameter we tend to use is t for Cartesian functions and θ for trigonometric functions
E.g. $x=3 t+2$ and $y=t^{3}+1$

Parametric Equations
We can express the equation of the circle in parametric form

The Cartesian equation can be found by substituting one equation into the other to eliminate t. This equation is known as the constraint equation.

Example: Express the parametric equations $\quad x=\frac{3+t}{2-t} \quad y=\frac{1-3 t}{2-t} \quad, t \neq 2$
in Cartesian from and show that the equation represents a line.

$$
\begin{array}{ll}
\begin{array}{ll}
2 x-x t=3+t & 2 y-y t=1-3 t \\
2 x-3=t+t x & 2 y-1=-3 t+y t \\
2 x-3=t(1+x) & 2 y-1=t(y-3) \\
t=\frac{2 x-3}{1+x} & t=\frac{2 y-1}{y-3} \\
\frac{2 x-3}{1+x}=\frac{2 y-1}{y-3} \\
(2 x-3)(y-3)=(2 y-1)(1+x) \\
2 x y-6 x-3 y+9=2 y+2 x y-1-x \\
-5 x-5 y+10=0 \\
x+y-2=0
\end{array} \\
\hline
\end{array}
$$

Parametric Differentiation

Examples: Find $\frac{d y}{d x}$
2. $x=t^{2}+\frac{1}{t^{2}} \quad y=t^{2}-\frac{1}{t^{2}}$
$x=t^{2}+t^{-2} \quad y=t^{2}-t^{-2}$
$d x / d t=2 t-2 t^{-3} \quad d y / d t=2 t+2 t^{-3}$
$=2 t-\frac{2}{t^{3}} \quad=2 t+\frac{2}{t^{3}}$
$d y / d x=\frac{2 t+\frac{2}{t^{3}}}{2 t-\frac{2}{t^{3}}}=\frac{2 t^{4}+2}{2 t^{4}-2}=\frac{2\left(t^{4}+1\right)}{2\left(t^{4}-1\right)}=t^{4}+1$

Parametric Differentiation
We use the chain rule to differentiate parametric functions.

Examples: Find $\frac{d y}{d x}$

1. $x=4+4 t$ and $y=3-3 t^{2}$
$\frac{d x}{d t}=4 \quad \frac{d y}{d t}=-6 t$
$d y / d x=d y / d t \div d x / d t=\frac{-6 t}{4}=\frac{-3 t}{2}$

Parametric Differentiation
Examples: Find $\frac{d y}{d x}$

$$
\begin{array}{ll}
\text { 3. } x=\theta-\sin \theta & y=1-\cos \theta \\
\frac{d x}{d \theta}=1-\cos \theta & d y / d \theta=\sin \theta \\
\frac{d y}{d x}=\frac{d y / d \theta}{d x} & (0 \leq \theta<2 \pi) \\
\frac{\sin \theta}{1-\cos \theta}
\end{array}
$$

Parametric Differentiation
Examples: Find $\frac{d y}{d x}$ in terms of x
4. $x=\sqrt{t} \quad y=t^{2}-3$
$x=t^{\frac{1}{2}}$
$d x / d t=\frac{1}{2} t^{-\frac{1}{2}} \quad d y / d t=2 t$
$=\frac{1}{2 t^{\frac{1}{2}}}$
$d y / d x=2 t \div \frac{1}{2 t \frac{1}{2}}$
$=2 t \times 2 t^{\frac{1}{2}}$
$=4 t^{3 / 2} \quad \begin{array}{ll}x=\sqrt{t} \\ x^{2}-t\end{array}$

$$
d y / d x=4\left(x^{x^{\frac{3}{2}}}=4 x^{3}\right.
$$

Parametric Differentiation

6. Given that $x=2 \sin \theta$ and $y=1-\cos 2 \theta(0 \leq \theta \leq \pi / 2)$
show that

$$
\frac{d y}{d x}=2 \sin \theta
$$

$$
\frac{d x}{d \theta}=2 \cos \theta \quad d y / d \theta=2 \sin 2 \theta
$$

$d y / d x=\frac{2 \sin 2 \theta}{2 \cos \theta}=\frac{\sin 2 \theta}{\cos \theta}=\frac{2 \sin \theta \cos \theta}{\cos \theta}=2 \sin \theta$ as required

Parametric Differentiation
Examples:
5. A curve is defined by the parametric equations

$$
x=t^{2}+1 \quad y=t\left(t^{2}+1\right)
$$

for all t. Find the equation of the tangent to the curve at the point with parameter $t=2$.

$$
\begin{array}{ll}
x=t^{2}+1 \quad y=t^{3}+t & x=t^{2}+1 \\
\frac{d x}{d t}=2 t \quad d y / d t=3 t^{2}+1 & x=2^{2}+1=5 \\
d y / d x=\frac{3 t^{2}+1}{2 t} \text { at } t=2 \Rightarrow \frac{3(2)^{2}+1}{2(2)}=\frac{13}{4}=m & y=t^{3}+t \\
y-10=\frac{13}{4}(x-5) & \\
4 y-40=13 x-65 & \\
& \\
13 x-4 y-25=0
\end{array}
$$

Parametric Differentiation (The second derivative)

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right) \\
& \begin{aligned}
=\frac{d(d y / d x)}{d x} & \div d t=\frac{\frac{d}{d t}(d y / d x)}{d x} \\
& \div d t=
\end{aligned} \\
& d^{2} y / d x^{2}=\frac{d}{d t}(d y / d x) \cdot \frac{d t}{d x}
\end{aligned}
$$

Parametric Differentiation (The second derivative)

Examples:
2. A curve is defined by the parametric equations

$$
\begin{aligned}
& x=\frac{2 t}{1-t^{2}} \quad y=\frac{1+t^{2}}{1-t^{2}} \\
& \text { Show that } \frac{d y}{d x}=\frac{2 t}{1+t^{2}} \text { and } \frac{d^{2} y}{d x^{2}}=\left(\frac{1-t^{2}}{1+t^{2}}\right)^{3} \\
& \frac{d x}{d t}=\frac{\left(1-t^{2}\right) \cdot 2-2 t(-2 t)}{\left(1-t^{2}\right)^{2}} \quad \frac{d y}{d t}=\frac{\left(1-t^{2}\right)(2 t)-\left(1+t^{2}\right)(-2 t)}{\left(1-t^{2}\right)^{2}} \\
& \begin{aligned}
=\frac{2-2 t^{2}+4 t^{2}}{\left(1-t^{2}\right)^{2}} & =\frac{2 t-2 t^{3}+2 t+2 t^{3}}{\left(1-t^{2}\right)^{2}} \\
& =4 t
\end{aligned} \\
& =\frac{2+2 t^{2}}{\left(1-t^{2}\right)^{2}} \quad=\frac{4 t}{\left(1-t^{2}\right)^{2}} \\
& d y / d x=\frac{4 t}{\left(1-t^{2}\right)^{2}} \div \frac{2+2 t^{2}}{\left(1-t^{2}\right)^{2}}=\frac{4 t}{\left(1-t^{2}\right)^{2}} \times \frac{\left(1-t^{2}\right)^{2}}{2+2 t^{2}}=\frac{4 t}{2\left(1+t^{2}\right)}=\frac{\frac{2 t}{1+t^{2}}}{\text { os required }} \\
& d^{2} y / d x^{2} \Rightarrow \frac{\left(1+t^{2}\right)(2)-2 t(2 t)}{\left(1+t^{2}\right)^{2}} \frac{1}{\frac{2+2 t^{2}}{\left(1-t^{2}\right)^{2}}}= \\
& \frac{2+2 t^{2}-4 t^{2}}{\left(1+t^{2}\right)^{2}} \cdot \frac{\left(1-t^{2}\right)^{2}}{2+2 t^{2}}=\frac{\not\left(1-t^{2}\right)\left(1-t^{2}\right)^{2}}{\not 2\left(1+t^{2}\right)^{2}\left(1+t^{2}\right)}=\frac{\left(1-t^{2}\right)^{3}}{\left(1+t^{2}\right)^{3}} \text { as requited }
\end{aligned}
$$

Motion in a plane

Car stays on ground.
Moves along one axis with respect to time.

Plane moves forward as well as up or down.
Moves along both axes with respect to time.

Motion in a plane

We can then say that acceleration is

$$
\sqrt{\left(\frac{d^{2} x}{d t^{2}}\right)^{2}+\left(\frac{d^{2} y}{d t^{2}}\right)^{2}}
$$

Motion in a plane

Until now, we have looked at rectillinear motion (in a straight line)
Particles are more likely to move in a plane.
Given an xy plane we let:
x be the horizontal component
y be the vertical component
t be a parameter to represent the time.

The horizontal velocity would then be $\frac{d x}{d t}$ or \dot{x}
The vertical velocity would be $\frac{d y}{d t}$ or \dot{y}

$$
\text { Speed }=|\mathrm{V}|=\sqrt{\left(\frac{d x}{d h}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}
$$

The direction of motion at any instant of time is $\frac{d y}{d x}=\tan \theta$

$$
\frac{d y / d t}{d x / d t}<
$$

Motion in a plane
,

1. A particle is moving along a path determined by the parametric equations

$$
x=4 t-1 \quad y=t^{2}+3 t
$$

where t represents time in seconds and distance is measured in metres
(a) How far is the particle from the origin at $t=0$?
(b) When $t=2$, calculate the speed of the particle
(c) Calculate the direction the particle is moving in when $t=2$

(b)

$$
\left\{\begin{array}{l}
x / d y / d t=2 t+3 \\
0 \\
d y / d t=4 \\
d y / d t=z^{2}
\end{array}\right.
$$

speed: $|x|=\sqrt{(4)^{2}+(7)^{2}}$ $=\sqrt{65}=8.1 \mathrm{~ms}^{-1}$
(c) Direction at $t=2$
$\begin{aligned} \operatorname{Tan} \theta & =d y / d x=\frac{7}{4} \\ \theta & =\operatorname{Tan}^{-1}\left(\frac{7}{4}\right)=60^{\circ}(\text { Ronnded }) \quad \text { Bearing }=90^{\circ}-60^{\circ}=030^{\circ}\end{aligned}$

