Use the binomial theorem to expand and simplify

$$
\begin{aligned}
& =\left(\frac{1}{3} x^{2}-2 x^{-1}\right)^{5} \quad(a+b)^{n}=\sum_{n=0}^{r}\binom{n}{r} a^{n=r} b^{r} \\
& =\binom{5}{0}\left(\frac{1}{3} x^{2}\right)^{5}+\binom{5}{1}\left(\frac{1}{3} x^{2}\right)^{4}\left(-2 x^{-1}\right)+\binom{5}{2}\left(\frac{1}{3} x^{2}\right)^{3}\left(-2 x^{-1}\right)^{2} \\
& \\
& +\binom{5}{3}\left(\frac{1}{3} x^{2}\right)^{2}\left(-2 x^{-1}\right)^{3}+\binom{5}{4}\left(\frac{1}{3} x^{2}\right)\left(-2 x^{-1}\right)^{4} \\
& \\
& +\binom{5}{5}\left(-2 x^{-1}\right)^{5}
\end{aligned}
$$

Today we will be learning how to write a rational function as partial fractions.

Partial_Fractions

Writing a function as partial fractions is reversing the process of writing a sum as a single fraction.

$$
\frac{3}{x+5}+\frac{4}{x}=\frac{7 x+20}{x(x+5)}
$$

How can you reverse the process?
Try this one

$$
\frac{x+2}{(x+4)(x+5)}
$$

Partial Fractions

The fractions must be proper i.e. the degree of the polynomial in the numerator must be smaller than the degree of the polynomial in the denominator.

The denominator must be in its factorised form so you can easily identify how to split it up.

Partial Fraction

2. $\frac{5 x-4}{x^{2}-x-2}=\frac{5 x-4}{(x-2)(x+1)}$

3. $\frac{3 x}{x^{2}+3 x+2}=\frac{3 x}{(x+2)(x+1)}$
$=\frac{A}{(x+2)}+\frac{B}{(x+1)}$
$\frac{A(x+1)+B(x+2)}{(x+1)(x+2)}=\frac{A x+A+B x+2 B}{(x+1)(x+2)}$
Equate like terms
$A x+B x=3 x \quad A+2 B=0$
$\stackrel{\begin{array}{c}A+8 \\ A+2 B^{9}=0\end{array}}{ }$
$-8=3$
$B=3$
$8=3$
$\begin{gathered}\mathrm{B}=3 \\ A-B=3 \\ A-3=3\end{gathered} \quad \frac{6}{x+2}-\frac{3}{x+1}$
$A-3=3$
$A=6$

Partial Fractions

Type 2: A denominator with a repeated factor.
Example: $\frac{3 x+7}{(x+1)^{2}} \quad \frac{a}{x+1}+\left(\frac{b}{x+1}\right)^{2}$

Think about how you would split this one.

$$
\begin{array}{r}
\frac{a(x+1)+b}{(x+1)^{2}}=\frac{a x+a+b}{(x+1)^{2}} \\
\frac{3}{x+1}+\frac{4}{(x+1)^{2}} \quad a=3 \quad a+b=7 \\
\quad b=4
\end{array}
$$

Partial Fractions

Example 2:

$$
\begin{aligned}
& \frac{4 x}{x^{2}-6 x+9}=\frac{4 x}{(x-3)(x-3)}=\frac{4 x}{(x-3)^{2}} \\
& \frac{a}{x-3}+\frac{b}{(x-3)^{2}} \\
& \begin{array}{rl}
\frac{a(x-3)+b}{(x-3)^{2}}=\frac{a x-3 a+b}{(x-3)^{2}} \quad \begin{array}{l}
a=4 \\
-3 a+b
\end{array} \\
\begin{aligned}
& 4 \\
& x-3=\frac{12}{(x-3)^{2}}
\end{aligned} & -12+b=0 \\
b & b=12
\end{array}
\end{aligned}
$$

Partial Fractions	
Type 3. There are 3 factors in the denominator (to give 3 cubic).These an in include a repeated factor too.	
Examples:	
1. Express $\frac{5 x-20 x+17}{(x-2)(2 x-5)(x+1)}$ in partial fractions.	
$=\frac{a}{(a v)}+\frac{b}{(2 x a t)}+\frac{c}{(x+1)}$	
$a(3 x-9)(x+1)+b(x-2)(x+2)+c(x-2)(2 x-5)$	
9[23 $-3 x-5]+6\left[x^{2}-x-2\right]+\left[2 x^{2}-9 x+10\right]$	
$(x-2)(2 x-5)(x+1)$	
	-2ks-4
$1 \quad b=-2(0-2()+5$	
$\frac{1}{x-2}-\frac{1}{2 x 5}+\frac{2}{x+1}$	

$$
\underline{\underline{\frac{3}{(x-1)}-\frac{2}{(x+2)}+\frac{1}{(x+2)^{2}}}}
$$

$$
\begin{aligned}
& \frac{x^{2}+11 x+15}{(x-1)(x+2)^{2}} \quad \frac{a}{(x-1)}+\frac{b}{(x+2)}+\frac{c}{(x+2)^{2}} \\
& \frac{a(x+2)^{2}+b(x-1)(x+2)+c(x-1)}{(x-1)(x+2)^{2}} \\
& =a\left[x^{2}+4 x+4\right]+b\left[x^{2}+x-2\right]+c x-c \\
& a x^{2}+4 a x+4 a+b x^{2}+b x-2 b+c x-c \\
& x^{2}[a+b]+x[4 a+b+c]+4 a-c-2 b \\
& a+b=1 \quad 4 a+b+c=11 \quad 4 a-c-2 b=15 \\
& \begin{array}{ccc}
a=1-b & 4(1-b)+b+c=11 & 4(1-b)-c-2 b=15 \\
& 4-4 b+b+c=11 & 4-4 b-c-2 b=15
\end{array} \\
& \begin{array}{l}
a=1-b \\
a=1-(-2)
\end{array} \\
& a=3 \\
& \begin{array}{rlrl}
-3 b+c=7 & 4-4 b-c-2 b & = \\
-6 b-c=11 \\
-9 b & =18 & -6 b-c=11 \\
b & =-2 & -2(-2)-c & =11 \\
12-c & =11 \\
& c & =1
\end{array}
\end{aligned}
$$

Partial Fractions

Partial Fractions

$$
\begin{aligned}
& \text { 4. } \frac{x^{2}+5 x-3}{(x-2)^{3}}=\frac{A}{x-2}+\frac{B}{(x-2)^{2}}+\frac{C}{(x-2)^{3}} \\
& \frac{A(x-2)^{2}+B(x-2)+C}{(x-2)^{3}} \\
& \frac{A\left(x^{2}-4 x+4\right)+B x-2 B+C}{(x-2)^{3}}=\frac{A x^{2}-4 A x+4 A+B x-2 B+C}{(x-2)^{3}} \\
& A=1 \quad-4 A+B=5 \quad 4 A-2 B+C=-3 \\
& -4+B=5 \quad 4-18+C=-3 \\
& B=9 \quad C=11 \\
& \frac{1}{(x-2)}+\frac{9}{(x-2)^{2}}+\frac{11}{(x-2)^{3}}
\end{aligned}
$$

Examples: Express in partial fractions

$$
\begin{aligned}
& \frac{5}{x^{3}-2 x^{2}+x-2}=\frac{5}{(x-2)\left(x^{2}+1\right)}=\frac{a}{x-2}+\frac{B x+c}{x+1} \\
& a x^{2}+a+3 x^{2}-2 B x+c x-2 c \\
& x^{2}(a+B)+x(-2 B+c)+a-2 c \\
& a+B=0 \quad-2 B+C=0 \quad a-2 c=5 \\
& a=-B \quad-2 B+c=0(x 2)-4 B+2 C=0 \\
& a=-(-1 \quad-B-2 c=5 \\
& a=1 \quad-(-1)-2 c=5 \quad-B=2 C=5 \\
& \frac{1}{1} \quad-2 B=5 \\
& \frac{1 x-2)}{\left(x-\frac{-x-2}{x^{2}+1} \quad-2 c=4\right.} \quad B=-1
\end{aligned}
$$

Algebraic_ long Division
Algebraic long division can be used to factorise a polynomial.

We can also use it when we have been given a fraction where the numerator has a higher power of x than the denominator i.e improper fractions.

$$
\frac{23260}{15}
$$

$155 \frac{10}{15}$

In this case the denominator cannot be fully factorised. (use the
discriminant to check/prove it is irreducible)

We write these in the form $\frac{A}{x+p}+\frac{B x+C}{q(x)}$ where $q(x)$ represents
the quadratic factor.
 $\frac{2}{(x-1)}+\frac{1-2 x}{\left(x^{2}+x+1\right)}$

Today we will be learning how to carry out algebraic long division.

Algebraic_Long_Division

Examples:

1. $x^{2}+2 x+4 \div(x+1)$

Algebraic long Division
Examples:
2. $x^{3}+4 x^{2}-x+2 \div\left(x^{2}+x\right)$

$x+3+\frac{-4 x+2}{x^{2}+x}$

Improper Fractions - Algebraic Long Division - Partia Fractions

- Carry out the division to obtain a polynomial and a
proper fraction
- Express the proper fraction in partial fractions.

Improper Fractions - Algebraic I ong Division - Partial Fractions
Example:
Express $\frac{x^{3}-3 x}{x^{2}-x-2}$ in partial fractions

$\frac{2}{(x+1)(x-2)}=\frac{A}{(x+1)}+\frac{B}{(x-2)}$
$\frac{A x-2 A+B x+B}{(x+1)(x-2)}$
$A x+B x=0 x \quad-2 A+B=2$
$A+B=0$

$-\frac{2}{3}+B=0$$\quad$	$A+B=0$
$-3 A=2$	

$x+1+\frac{-2}{3(x+1)}+\frac{2}{3(x-2)}=\frac{x^{3}-3 x}{x^{2}-x-2}$
(a) Express $\frac{1}{(x-1)(x+2)^{2}}$ in partial fractions. Marks

