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Proof by Induction

Proving by induction is proving a statement or theorem by a process
of ordered steps. It gives us 3 method onrooffor a result which seems
to be true.

To prove by induction:

* We first prove that a statement is true for a positive integer value of
neg.n=1

* We then check the statement for n = k and assume true.

* We then prove that the theorem is true for n = k + 1 by using the
assumption from 2. This will confirm it to be correct.

The conclusion is that if the theorem is true for n = k, then it must be
true for n = k +1 but since it's true for n =1, then by induction it is
true for all positive integers n.

We then pro

Proof by Induction

2. Prove that n* + 3n is divisible by 2 foralln € N
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Proof by Induction

4. Prove by induction that z":rl :én(n+l)(2n+l) forall positive
integers n. o
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Praof by Induction

Examples:

1. For the sequence 1, 3, 6, 10, ... the sequence is generated by the
recurrence relation U, = u, + n + 1.

The conjecture for the n'" term is u, = '/an(n+) n € N

Prove this conjecture by induction. ‘
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Since true for n = k, true for n = k + 1 and true for n = 1 then true
forallnz1.n € N.

Proof by Induction

3. Prove by induction that Z‘:(Z"U:"Z for all positive integers n.
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Proof by Induction

5. Given z = cos® + isin® prove by induction that z' = cosn® + isinn®
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If true for n =k, then true for n = k + 1 and since true for n =1
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If true for n =k, then true for n = k + 1 and since true forn=1,
then true for all n EN.
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