Prove by Induction that $d^{n} / d x^{n}\left(x e^{x}\right)=(x+n) e^{x}$

Consider the line that passes through $A\left(x_{1}, y_{1}, z_{1}\right)$ parallel to
$\Delta=a i+b j+c k$.
(The vector μ is known as a direction vector for the line L).

Let $P(x, y, z)$ be any point on the line L

Equation of aline in symmetric form

Find, in symmetric form the equation of the line passing through

$$
A(2,-1,3) \text { and } B(3,2,5)
$$

$$
\begin{gathered}
\overrightarrow{A B}=b-a=\left(\begin{array}{l}
3 \\
2 \\
5
\end{array}\right)-\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right) \frac{a}{b} \\
\frac{x-x_{1}}{a}=y \frac{y-y_{1}}{b}=\frac{z-z_{1}}{c} \\
\frac{x-2}{1}=y \frac{y+1}{3}=\frac{z-3}{2}
\end{gathered}
$$

Equation of aline in 3 dimensions
2 dimensional lines: We need a coordinate and the gradient

3 dimensional lines: We need a coordinate and a vector in the direction of the line.

Example:
$x_{1} y_{1} z_{1}$
(a) The ling L passes through the point $A(1,-2,8)$ and is parallel to the vector $3 i+5 j+11 k$. Find the equation of the line L in symmetric form.
(b) Show that the point $B(-2,-7,-3)$ also lies on the line L.
(a) $t=\frac{\frac{x-x_{1}}{a}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$

$$
\frac{x-1}{3}=\frac{y+2}{5}=\frac{z-8}{\pi}
$$

(b) Sub. int each equation

$$
\begin{aligned}
& \frac{x-1}{3}=\frac{-2-1}{3}=-1 \\
& \frac{y+2}{5}=\frac{-7+2}{5}=-1 \\
& \frac{z-8}{11}=\frac{-3-8}{11}=-1
\end{aligned}
$$

Satisfies all three equations.
therefore point B lies on the line.

The equation of a line in parametric form

$$
\begin{array}{ccc}
\frac{x-x_{1}}{a}=t & \frac{y-y_{1}}{b}=t & \frac{z-z_{1}}{c}=t \\
x-x_{1}=a t & y-y_{1}=b t & z-z_{1}=c t \\
x=x_{1}+a t & y=y_{1}+b t & z=z_{1}+c t
\end{array}
$$

Expressing x, y, and z in terms of the parameter t is known as expressing the equation in parametric form. (Any letter can be used instead of t).

The equation of aline in parametric form
Examples:
$x_{1}, y, z=$

1. A line passes through $(3,2,-5)$ and is parallel to the vector
$a \quad b c$
$2 i+4 j-k$. Find the equation of this line in parametric form.
$t=\frac{x-3}{2}=\frac{y-2}{4}=\frac{z+5}{-1}$

Example: Find the eqution of the line passing through $\mathrm{A}(2,2,1)$ and parallel to $3 i-j-k$ in Vector, Parametric and Symmetric form.

Vector form

$$
\begin{aligned}
& P=q+t \underline{u} \\
& P=\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right)+t\left(\begin{array}{c}
3 \\
-1 \\
-1
\end{array}\right)
\end{aligned}
$$

읃

$$
P=2 i+2 j+k+t(3 i-j-k)
$$

Parametric form
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)+\left(\begin{array}{c}3 t \\ -t \\ -t\end{array}\right)$

$$
\frac{x=2+3 t, y=2-t, z=1-t}{\text { Symmetric ar Cartesion form }}
$$

$$
\frac{x-2}{3}=\frac{y-2}{-1}=\frac{z-1}{-1}
$$

The angle between two lines

The angle between 2 intersecting lines L_{1} and L_{2} is the angle between the direction vectors of the lines and is therefore found as follows:

1. Find a vector a in the direction of L_{1}
2. Find a vector b in the direction of L_{2}
3. The angle between the lines L_{1} and L_{2} is the angle between the direction vectors a and b.

$$
\text { Hence } \cos \theta=\frac{\underline{a} \cdot \underline{b}}{|\underline{a} \| \underline{b}|}
$$

The equation of each line should be expressed in symmetric form first, as the direction vector of a line can be easily read from this form.

Vector form of the equation of a line

To find the vector equation of a line through a point $A(x, y, z)$.

We use the point A and the direction vector u where u is the direction vector parallel to the line.

$p-g=t \underline{u}$
$p=s+t \underline{u}$

Vector equation

The angle between two lines
Examples:

$$
\begin{gathered}
L_{1}=\frac{x+3}{-1}=\frac{y-4}{1}=\frac{z}{-1} \\
L_{2}=x=2 t-2, y=-3 t+1, z=t-1
\end{gathered}
$$

Given that L_{1} and L_{2} intersect, calculate the size of the acute angle between the lines.
What La insymmater form
$t=\frac{x+2}{2}=\frac{y-1}{3}=\frac{z+1}{1}$

Angle between L_{1} ad L_{2} is ongle behween a ond k
$\operatorname{Cos} \theta=\frac{9 \cdot \frac{b}{|g| l|l|}}{}$

$=-2-3$
$=-6$
$\stackrel{-6}{=} \cos \theta=\frac{-6}{\sqrt{4 n} \sqrt{3}}$

Aak afd $180^{\circ}-1578^{\circ}=22.2^{\circ}$
14. Two lines L_{1} and L_{2} are given by the equations:

$$
\begin{aligned}
& L_{1}: \quad x=4+3 \lambda, \quad y=2+4 \lambda, \quad z=-7 \lambda \\
& L_{2}: \quad \frac{x-3}{-2}=\frac{y-8}{1}=\frac{z+1}{3}
\end{aligned}
$$

(a) Show that the lines L_{1} and L_{2} intersect and find the point of intersection

Calculate the obtuse angle between the lines L_{1} and L_{2}.

Calculate the obtuse angle between the lines L_{1} and L_{2}.

$$
a \cdot b=(3)(-2)+4(1)+(-7)(3)=-23
$$

$$
|a|=\sqrt{(3)^{2}+4 z+(-7)^{2}}=\sqrt{74} \quad|b|=\sqrt{(-2)^{2}+4^{2} 3^{2}}=\sqrt{14}
$$

$$
\cos \theta=\frac{-23}{\sqrt[147]{14}}
$$

$$
\theta=135.6^{\circ}
$$

The equation of a plane

Examples:

1. Find the equation of the plane perpendicular to the vector
$i-3 j+2 k$ and containing $P(-1,2,1)$

$$
\begin{aligned}
a x+b y+c z & =k \\
x-3 y+2 z & =k
\end{aligned}
$$

Sub. P into equation
$-1-3(2)+2(1)=k$

$$
-5=k
$$

The equation of the pore is $x-3 y+2 z_{-}-5$

The equation of a plane
3. The equation of the line L is given by

$$
\frac{x}{-2}=\frac{y+2}{-1}=\frac{z-9}{2}
$$

The plane $\pi /$ passes through $(1,-4,2)$. Find the equation of the plane π.
is perpendicular to the line L and
$\Delta=\left(\begin{array}{c}-2 \\ -1 \\ 2\end{array}\right)$ Equation of the plane
$\left(\begin{array}{cc}x y z\end{array}(1,-4,2) \quad-2 x-y+2 z=k\right.$
$-2(1)-(-4)+2(2)=k$
$k=6$
$-2 x-y+2 z=6$

$$
\begin{aligned}
& L_{2}: \frac{x-3}{-2}=\frac{y-8}{1}=\frac{z+1}{3} \quad b=\left(\begin{array}{c}
-2 \\
3 \\
3
\end{array}\right)
\end{aligned}
$$

The equation of a plane
A plane is a flat 2D surface.
A vector perpendicular to a plane is known as a normal vector and is
denoted by n
A normal vector is in fact perpendicular to all vectors in the plane

The coordinates of amu mint an the plena will

The equation of a plane
2. Given $\frac{P(2,1,-4)}{x y z} Q(1,2,3)$, find the equation of the plane perpendicular to $P Q$ which contains P.

$$
\overrightarrow{P Q}=\Delta=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)-\left(\begin{array}{c}
2 \\
1 \\
-4
\end{array}\right)=\left(\begin{array}{c}
-1 \\
1 \\
7
\end{array}\right)
$$

Equation of the plane: $-x+y+7 z=k$

$$
\begin{gathered}
-2+1+7(-4)=k \\
k=-29 \\
-x+y+7 z=-29
\end{gathered}
$$

$$
\begin{aligned}
& \text { e point } \mathrm{P}(2,4,1) \text { and is parallel to } \\
& \begin{array}{l}
a \quad b< \\
\mathbf{u}_{1}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}
\end{array} \quad \frac{x-2}{1}=\frac{y-4}{2}=\frac{z=1}{-1}
\end{aligned}
$$

and a second line, L_{2}, passes through $\mathrm{Q}(-5,2,5)$ and is parallel to

$$
\mathbf{u}_{2}=-4 \mathbf{i}+4 \mathbf{j}+\mathbf{k}
$$

(a) Write down the vector equations for L_{1} and L_{2}
(b) Show that the lines L_{1} and L_{2} intersect and find the point of intersection.
(c) Determine the equation of the plane containing L_{1} and L_{2}.

Vector Product

The scalar product is where two vectors multiply to give a scalar

The vector product is where 2 vectors can be multiplied to give a vector answer. We write this as $a \times b$.

$$
a \times b=n|a||b| \sin \theta
$$

Where O is the angle between a and b n is the normal to the plone. If $a=0$ or $b=0$, then n is unde fined
 and $a \times b=0$

Parallel vectors hove a vector product of zero.

Vector Product

Examples:

$$
\begin{aligned}
& \text { 1. }\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \times\left(\begin{array}{l}
2 \\
1 \\
4
\end{array}\right)\left|\begin{array}{lll}
i & j & k \\
1 & 2 & 3 \\
2 & 1 & 4
\end{array}\right| \\
& =i(2(4)-3(1))-j(1(4)-3(2))+k(1(1)-2(2)) \\
& =5 i+2 j-3 k
\end{aligned}
$$

3. $a=3 i+2 j-k, b=i-j-2 k$ and $c=4 i-3 j+4 k$
findax(bxs)

$$
\underline{b} \times s=\left|\begin{array}{ccc}
i & j & k \\
1 & -1 & -2 \\
4 & -3 & 4
\end{array}\right|
$$

$b \times \underset{c}{=}=i(-(14)-(-2)(-3))-j(1(4)-(-2)(4))+j(1(-3)-(-1)(4))$

$$
=-10 i-12 j+k
$$

$a \times(b \times s)=\left|\begin{array}{ccc}i & j & k \\ 3 & 2 & -1 \\ -10 & -12 & 1\end{array}\right|$
$a \times(b \times s)=i(2(1)-(-1)(-12))-j(3(1)-(-1)-10)+k(3(-12)-2(-10))$
$=-10 i+7 j-16 k$
An important property of the vectro product is that
the vector $\mathrm{g} \times \mathrm{b}$ is always perpendicular to each of the vectors g and b

$$
\begin{array}{ll}
\text { a. }(a \times b)=0 & a \times b=-(b \times a) \\
b \cdot(a \times b)=0 & a \times b
\end{array}
$$

$\frac{\text { Vector Product - Componest form }}{\underline{a}=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right) \quad \underline{\underline{b}}=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)}$
$a \times b=\left|\begin{array}{ccc}i & j & k \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$
$=i\left(a_{2} b_{3}-a_{3} b_{2}\right)-j\left(a_{1} b_{3}-a_{3} b_{1}\right)+k\left(a_{1} b_{2}-a_{2} b_{1}\right)$

Vector Product
2. If $a=i+2 j+3 k$ and $b=2 i-j+k$, find $a \times b$ and $b \times \underline{a}$

$$
g \times \underline{b}=\left|\begin{array}{ccc}
1 & j & k \\
1 & 2 & 3 \\
2 & -1 & 1
\end{array}\right|
$$

$$
9 \times b=i(2(1)-3(-1))-j(1(1)-3(2))+k(1(-1)-2(2))
$$

$$
=5 i+5 j-5 k
$$

$$
b \times q=\left|\begin{array}{ccc}
i & j & k \\
2 & -1 & 1 \\
1 & 2 & 3
\end{array}\right|=-5 i-5 j+5 k
$$

Vector Product

An important property of the vector product is that the vector $a \times b$ is always perpendicular to each of the vectors a and b

Scalar Triple Product
The scalar triple product gives a scalar answer.

Example: Three vectors $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$ are given by u, v and w where $u=5 i+13 j, v=2 i+j+3 k$ and $w=i+4 j-k$. Calculate $u .(v \times w)$

$$
\underline{v} \times \underline{\omega} \quad\left|\begin{array}{ccc}
i & j & k \\
2 & 1 & 3 \\
1 & 4 & -1
\end{array}\right|
$$

$=i((0)-(-1)-(3)(4))-j(2(-1)-(3)(i))+k(2(4)-1(1))$
$=-13 i+5 j+7 k$
$u .(\underline{\underline{v}} \times \underline{w})=\left(\begin{array}{c}5 \\ 13 \\ 0\end{array}\right) \cdot\left(\begin{array}{c}-13 \\ 5 \\ 7\end{array}\right): 5(-13)+13(5)+(0)(7)=\underline{0}$

This shows us that \underline{U} is on the same plane as \underline{v} and \underline{w}.

Equation of a Plane

2. A plane is parallel to the vectors $3 i+2 i-k$ and $4 i-2 k$. The plane contains the point ($1,1,0$). Find the equation of the plane.

$$
\begin{aligned}
& \underline{u} \times v=\left|\begin{array}{ccc}
1 & j & k \\
3 & 2 & -1 \\
4 & 0 & -2
\end{array}\right|=i(2(-2)-(-1)(0))-j(3(-2)-(-1)(4))+k(3(d-4(2)) \\
&=-4 i+2 j-8 k=2 \\
& a x+b y+c z \equiv k \\
&-4(1)+2(1)+-86)=k \\
& k=-2
\end{aligned}
$$

Equation of a Plane
We can find the normal to a plane using the vector product. Given a
plane containing the vectors a and b, the normal of the plane is $a \times b$

Examples:

1. Find the equation of the plane containing $A(2,1,3) B(7,2,3)$
and $C(5,3,5)$

k ($\left.5(5)-(0))^{2}\right)$
$a x+b y+c e=k$
$2(2)+(-10)(1)+7(3)=k$
$k=15$
$2 x-10 y+7 z=15$

Equation of Plane in Vector Form
The Vector Equation of a plane means to leave your equation in the form of vectors.

Examples:

1. Find the vector equation of the plane through $(-1,2,1)$ with norma vector $i-3 j+2 k$.

$$
\begin{aligned}
& n \cdot p=n \cdot a \\
& n \cdot p=\left(\begin{array}{c}
1 \\
-3 \\
2
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)=((-1)+(-3)(2)+(2)(1)=-5
\end{aligned}
$$

$$
\underline{P} \cdot(r-3 j+2 k)=-5
$$

Parametric Equation of a Plane
We use parallel vectors to work out the parametric equation of a plane.

$$
\overrightarrow{A P}=\lambda \underline{b}+N \underline{s}
$$

$p-q=\lambda b+H s$
$P=9+\lambda \frac{k}{2}+N g$

Parametric Equation of a_ Plane

Examples:

1) Find the parametric equation of the plane which goes through the point $(5,-2,-3)$ and parallel to the vectors $-5 i-2 i+3 k$
and $-2 i+2 j+4 k$.

$$
\begin{aligned}
& p=a+\lambda \underline{b}+\mu c \\
& P=\left(\begin{array}{l}
5 \\
-2 \\
-3
\end{array}\right)+\lambda\left(\begin{array}{c}
-5 \\
-2 \\
3
\end{array}\right)+N\left(\begin{array}{c}
-2 \\
2 \\
4
\end{array}\right) \\
& P=\left(\begin{array}{l}
5-5 \lambda-2 \mu \\
-2-2 \lambda+2 \mu \\
-3+3 \lambda+4 N
\end{array}\right)
\end{aligned}
$$

Parametric Equation of a Plane

3) Find the cartesian form of the equation of a plane with parametric equation

$$
r=a+\lambda_{b}+\mu c \quad \text { where } \quad \begin{aligned}
a & =i+2 j-k \\
b & =i+j+2 k \\
c & =2 j-k
\end{aligned}
$$

Parametric Equation of a Plane

2) Find the parametric equation of the plane with cartesian equation $x+5 y-3 z=11$

If two planes are perpendicular, then their normals will be perpendicular. Therefore to show that they are perpendicular, show that $n_{1} \cdot n_{2}=0$

The angle between two planes
Examples:

$a x+b y+c z=k$

π_{1} is a plane with equation $2 x+3 y+z=5$ and π_{2} is a plane with equation $\mathrm{x}+\mathrm{y}-\mathrm{z}=0$. Calculate the angle between π_{1} and π_{2}

$$
\begin{array}{rlr}
\underline{n}_{1} & =2 i+3 j+k \\
\underline{n}_{2} & =i+j-k & \operatorname{Cos} \theta=\frac{\underline{n_{1}} \cdot n_{2}}{\left|b_{1}\right|\left|n_{2}\right|} \\
n_{1} \cdot n_{2} & =2(1)+3(1)+1(-1)=4 & \operatorname{Cos} \theta=\frac{4}{\sqrt{14} \sqrt{3}} \\
\left|n_{1}\right|=\sqrt{2^{2}+3^{2}+1^{2}}=\sqrt{14} & \theta=\cos ^{-1}\left(\frac{4}{\sqrt{4 \sqrt{3}}}\right) \\
\left|n_{2}\right|=\sqrt{1^{2}+1^{2}+(-1)^{2}}=\sqrt{3} & \theta=51 \cdot 89^{\circ}
\end{array}
$$

Intersection of planes

In relation to each other, planes in 3D space can be

1. Coincident (one on top of the other)

2. Parallel

3. Intersect on a line

Note: parallel or coincident planes have normals that are proportional

Intersection of three planes

Three planes can

- Intersect at a line.
- Intersect at a point.
- Not intersect at all.

If two planes intersect at a line, we determine the equation of the lin of intersection.

Example.

The equations of 2 planes are $x-4 y+2 z=1$ and $x-y-z=-5$. Find
the equation of the line of intersection of the two planes.
Let zit
$\begin{array}{ll}\pi_{1}: x-4 y+2 t=1 & \pi_{2} 8 x-y-t=-5 \\ \text { (1) } x-4 y=-2 t+1 & \text { (2) } x-y-t-5\end{array}$
Solve 10 and (2)

Parantric equitios of Musection
$x=2 t-7, y=t-2, z=t$
Cravin form $^{2} \frac{x+7}{2}=\frac{y \pm 2}{1}=\frac{z}{T}$

Intersection of three planes

Examples

1) Intersection at a Point

Find the point of intersection of the 3 planes with the following equations.

$$
\begin{gathered}
x-2 y+z=8 \\
3 x+y-z=1 \\
2 x-2 y+3 z=18 \\
r_{2}-3 r_{1}\left(\begin{array}{ccc|c}
1 & -2 & 1 & 8 \\
0 & 7 & -4 & -23 \\
2 & -2 & 3 & 18
\end{array}\right) \quad\left(\begin{array}{ccc|c}
1 & -2 & 1 & 8 \\
3 & 1 & -1 & 1 \\
2 & -2 & 3 & 18
\end{array}\right) \\
7 r_{3}-2 r_{1}-2\left(\begin{array}{ccc|c}
1 & -2 & 1 & 8 \\
0 & 7 & -4 & -23 \\
0 & 2 & 1 & 2
\end{array}\right) \\
\text { Pt. of intrsection: } \\
\left.\begin{array}{ccc}
1 & -2 & 1 \\
0 & 7 & -4 \\
0 & 0 & 15 \\
-23 \\
60
\end{array}\right) \quad \begin{array}{l}
z=4 \\
7 y-4(4)=-23 \\
y=-1 \\
x-2(-1)+4=8 \\
x=2
\end{array}
\end{gathered}
$$

Intersection of three planes

3) No points of intersection

Gaussian elimination will yield no solution.
Show that these planes do not intersect.

$$
\begin{array}{r}
x+y+z=2 \\
2 x-2 y+z=5 \\
3 x-y+2 z=-1 \\
r_{2}-2 r_{1}\left(\begin{array}{ccc|c}
1 & 1 & 1 & 2 \\
0 & -4 & -1 & 1 \\
3 & -1 & 2 & 1
\end{array}\right)\left(\begin{array}{ccc|c}
1 & 1 & 1 & 2 \\
2 & -2 & 1 & 5 \\
3 & -1 & 2 & -1
\end{array}\right) \\
r_{3}-r_{2}\left(\begin{array}{ccc|c}
1 & 1 & 1 & 2 \\
0 & -4 & -1 & 1 \\
0 & 0 & 0 & -8
\end{array}\right) \quad \begin{array}{c}
\text { inconsistent set of equations } \\
0
\end{array} \begin{array}{ccc|c}
1 & 1 & 2 \\
0 & -4 & -1 & 1 \\
& \Rightarrow \text { no solution as planes do not } \\
\text { intersect. }
\end{array}
\end{array}
$$

The Intersection of a line and a plane

If there is only one solution then a point of intersection exists.

If there are many solutions then the line lies on the plane.

If there is no solution then the line is parallel to the plane.
(To show that a line is parallel to the plane you need to show
that the direction vector of the line is perpendicular to normal vector of the plane. ie $d . n=0$)

The Intersection of a line and a plane
Example:
Find the point of intersection of the line

$$
t=\frac{x-3}{4}=\frac{y-2}{-1}=\frac{z+1}{2}
$$

with the plane with equation $2 x+y-z=4$

The angle between a line and a plane

Example:

Calculate the size of the acute angle between the line

$$
\frac{x-3}{4}=\frac{y-2}{-1}=\frac{z+1}{2}
$$

and the plane with equation $2 x+y-z=4$

$$
\begin{aligned}
& \underline{a}=\left(\begin{array}{c}
4 \\
-1 \\
2
\end{array}\right) \quad 2=\left(\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right) \quad \cos \theta=\frac{a \cdot n}{|a| n \mid} \\
& \text { Q. } 1=(4)(2)+(-0)(1)+2(-1)=5 \\
& |a|=\sqrt{4^{2}+(-1)^{2}+2^{2}}=\sqrt{21} \\
& |\Omega|=\sqrt{2^{2}+R^{2}+(-1)^{2}}=\sqrt{6} \\
& \cos \theta=\frac{5}{\sqrt{2 \sqrt{6} 6}} \quad \theta \cdot \cos ^{-1}\left(\frac{5}{\sqrt{\sqrt{2} \sqrt{6}}}\right)=63.5^{\circ} \\
& 90^{\circ}-63.5^{\circ}=26.5^{\circ}
\end{aligned}
$$

The Intersection of a line and a plane

1. Find the equation of the plane in parametric form
2. Substitute parametric form with x, y and z into the equation of the plane.
3. Solve the equation for the parameter and hence find the coordinate of the point of intersection.

The angle between a line and a plane

- Find the normal vector to the plane
- Find the direction vector from the line
- Use the scalar product to find the angle between ' n ' and ' d '.
- Remember to subtract the angle from 90° to find the angle between the line and the plane. $\left(B=90^{\circ}-A\right)$

Specimen

The lines L_{1} and L_{2} are given by the following equations.
$\mathrm{L}_{1}: \quad \frac{x+6}{3}=\frac{y-1}{-1}=\frac{z-2}{2}$
$\mathrm{L}_{2}: \quad \frac{x+5}{4}=\frac{y+4}{1}=\frac{z}{4}$
(a) Show that the lines L_{1} and L_{2} intersect and state the coordinates of the point
(b) Find the equation of the plane containing L_{1} and L_{2}.

A third line, L_{3}, is given by the equation $\frac{x-1}{2}=\frac{y+7}{4}=\frac{z-3}{-1}$
(c) Calculate the acute angle between L_{3} and the plane. Give your answer in degrees correct to 2 decimal places

Exemplar

A line, L_{1}, passes through the point $\mathrm{P}(2,4,1)$ and is parallel to $\mathbf{u}_{1}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$
and a second line, L_{2}, passes through $\mathrm{Q}(-5,2,5)$ and is parallel to $\mathbf{u}_{2}=-4 \mathbf{i}+4 \mathbf{j}+\mathrm{k}$.
(a) Determine the vector equations for L_{1} and L_{2}.

2
(b) Show that the lines L_{1} and L_{2} intersect and find the point of intersection
(c) Determine the equation of the plane containing L_{1} and L_{2}.

2015

A line, L_{1}, passes through the point $\mathrm{P}(2,4,1)$ and is parallel to
$\mathbf{u}_{1}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$
and a second line, L_{2}, passes through $\mathrm{Q}(-5,2,5)$ and is parallel to
$\mathbf{u}_{2}=-4 \mathbf{i}+4 \mathbf{j}+\mathbf{k}$.
(a) Write down the vector equations for L_{1} and L_{2}.

2
(b) Show that the lines L_{1} and L_{2} intersect and find the point of intersection.

4
(c) Determine the equation of the plane containing L_{1} and L_{2}.

2013
15. (a) Find an equation of the plane π_{1}, through the points $A(0,-1,3), B(1,0,3)$ and $C(0,0,5)$.
(b) π_{2} is the plane through A with normal in the direction $-\mathbf{j}+\mathbf{k}$. Find an equation of the plane π_{2}.
(c) Determine the acute angle between planes π_{1} and π_{2}.

