

Q1. Simplify $m^{7} \div m^{3}=\frac{m^{7}}{m^{3}}=m^{4}$
Q2. State the gradient of the line joining $(-5,2)$ and $(3,7)$
$m=\frac{7-2}{3-(-5)}=\frac{5}{8}$
Q3. Simplify $\sqrt{8}+3 \sqrt{2+} \sqrt{50}$
$\sqrt{4} \sqrt{2}+3 \sqrt{2}+\sqrt{25} \sqrt{2}$ $2 \sqrt{2}+3 \sqrt{2}+5 \sqrt{2}=10 \sqrt{2}$
Q4. Simplify

$m^{\prime}-m^{2}$
Today we will be completing a check-up on multiplying out and factorising.
PSP Target
Surds and Indices: I con explain what a surd is.
I ca simplify surds
can $+/-/ x \mid \div$ surds
I can writ fractions with a rational denominator.
\mid can $x \mid \div$ terms with powers.
Algebra: I can multiply out brackets and simplify.
I can factorise using common factor, difference of
2 squares and tnnomials.

Daily Practice

 20.1.2016Q1. Mutliply out and simplify $(2 x-1)\left(3 x^{2}+7 x-8\right)$

$$
\begin{gathered}
6 x^{3}+14 x^{2}-16 x-3 x^{2}-7 x+8 \\
6 x^{3}+11 x^{2}-23 x+8
\end{gathered}
$$

Q2. Calculate the original cost of a bike that is now $£ 240$ in the sale with
15% off.

$$
\begin{aligned}
85 \% & =240 \\
1 \% & =240 \div 85=2.8235 \\
100 \% & =2.8235 \times 100=f 282.35
\end{aligned}
$$

L.I: Today we will be learning how to simplify algebraic fractions.
S.C: We will be able to simplify an algebraic fraction using our knowledge of factorising and simplifying.
Q3. Calculate the area of an eighth of a circle with diameter 12 cm

$$
\begin{aligned}
& \qquad \begin{array}{ll}
A=\pi r^{2} & =\pi \times b^{2}=113.097 \ldots \\
\frac{1}{8} A & =113.097 \ldots \div 8=14.14 \mathrm{~cm}^{2}
\end{array}
\end{aligned}
$$

$$
(2 x+5)(x-3)
$$

Simplifying Algebraic Fractions $20 \cdot 1 \cdot 16$
How do you simplify a fraction?

$$
\frac{32}{36} \div 4=\frac{8}{9}
$$

How do you simplify a fraction in the form $\frac{12 p q}{16 p}$?

$$
\begin{aligned}
& \frac{12 p q}{16 p} \div 4 p \\
& \div 4 p
\end{aligned}=\frac{3 q}{4}, ~\left[\begin{array}{l}
\frac{3 x+12}{15 x-6} \div 3=\frac{x+4}{5 x-2}
\end{array}\right.
$$

$$
\begin{aligned}
\frac{x^{2}-4}{x^{2}-5 x+6} & =\frac{(x-2)(x+2)}{(x-3)(x-2)} \\
& =\frac{x+2}{x-3}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3 p-12 p^{2}}{9 p^{2}}=\frac{3 p(1-4 p)}{9 p^{2}} \div 3 p \\
= & \frac{1-4 p}{3 p} \div 3 p
\end{aligned}
$$

Simplifying Algebraic Fractions
Same process as simplifying regular fractions

- First fully factorise numerator $\&$ denominator where possible.
- Divide top and bottom by the HCF (otherwise known as cancelling)

Examples: Simplify the following
(a) $\frac{20 a b}{15 a^{2} b} \div 5 a b=\frac{4}{3 a}$
(b) $\frac{6 x-4}{18 x}=\frac{2(3 x-2)^{\div 2}}{18 x} \div 2$
$=\frac{3 x-2}{9 x}$

Simplifying Algebraic Fractions
Simplify fully:
(c) $\frac{2 x^{2}-12 x}{x^{2}-4 x-12}$
(c) $\frac{x^{2}-49}{x^{2}-10 x+21}$

Daily Practice
22.1.2016

Q1. Factorise fully $12 x^{2}-3$

Q2. Write with a rational denominator and fully simplify $\frac{4}{\sqrt{8}}$

Q3. Multiply out and simplify $(x+3)^{2}+2 x$

Q4. State the equation of the line joining $(-1,3)$ and $(2,5)$
L.I: Today we will be continuing to learn how to simplify algebraic fractions.

$$
\begin{aligned}
& \qquad 2 x^{3}+6 x^{2}-10 x+4 x^{2}+12 x-20 \\
& \text { Q2. Factorise } x^{2}+x-2 \\
& \left.\begin{array}{ll}
(x-1)(x+2) & x \\
(x-10 & x \\
\hline
\end{array}\right) \\
& \text { Q3. State the equation of the line that passes through (0, 4) and (3, 1) }
\end{aligned}
$$

$$
\begin{aligned}
& \qquad \begin{array}{r}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-1}{0-3}=\frac{3}{-3}=-1 \\
\text { Q4. Solve the equation } \frac{x}{5}-\frac{x+3}{2}=-3 \times 10 \\
\times 10 \\
2 x-5 x-15=-30 \\
-3 x=-15 \\
x=5
\end{array}
\end{aligned}
$$

Simplify $\frac{2 x+2}{(x+1)^{2}}$.

Simplify
$\frac{(2 x+5)^{2}}{(2 x-1)(2 x+5)}$

Hence express $\frac{3 y^{2}-6 y}{y^{2}+y-6}$ in its simplest form.

$$
\frac{b^{2}-4}{b+2}
$$

$$
\frac{x^{2}-81}{x-9}
$$

$$
\frac{q^{2}-9}{3 q+9}
$$

$$
\begin{array}{lc}
\frac{x^{2}-y^{2}}{5 x-5 y} & \frac{x^{2}+3 x+2}{x+1} \\
& \\
\frac{p-1}{p^{2}-2 p+1} & \frac{a^{2}-1}{a^{2}+2 a+1}
\end{array}
$$

$$
\frac{c^{2}+2 c-15}{c^{2}-25}
$$

$$
\frac{3 x^{2}+5 x-2}{x^{2}-4}
$$

$$
\frac{y^{2}+6 y+8}{y^{2}+y-12}
$$

$$
\frac{6 a^{2}-13 a-5}{3 a^{2}-11 a-4}
$$

Adding/Subtracting Algebraic Fractions

$26 \cdot 1 \cdot 16$

How do you add two fractions together?

$$
x x^{8} \frac{2}{3}+\frac{1}{8} x^{3}=\frac{16}{24}+\frac{3}{24}=\frac{19}{24}
$$

What if the fractions had algebraic terms?

$$
\begin{aligned}
\frac{2}{a}+\frac{3 b}{4} & =\frac{8}{4 a}+\frac{3 a b}{4 a} \\
& =\frac{8+3 a b}{4 a}
\end{aligned}
$$

L.I: Today we will be learning how to add/subtract algebraic fractions.

$$
\frac{2 x^{2}+13 x+6}{x^{2}+9 x+18}
$$

Adding/Subtracting Algebraic Fractions
Same process as adding/subtracting regular fractions.

- Find a common denominator
- Convert the fractions so that they have the same denominator
- Add/subtract them.
- Simplify where possible (at the end).

Adding/Subtracting Algebraic Fractions
Examples: Express as single fractions

$$
\text { (a) } \begin{array}{rlrl}
\frac{3 m}{5} & +\frac{m}{4}=\frac{12 m}{20}+\frac{5 m}{20} \quad \frac{3}{n^{2}}-\frac{5}{n} \quad n \neq 0 \\
& =\frac{17 m}{20} & \frac{3}{n^{2}}-\frac{5 n}{n^{2}}=\frac{3-5 n}{n^{2}}
\end{array}
$$

(c) $x^{2 b} \frac{a}{2 b^{2}}+\frac{2 a}{4 b^{3}}=\frac{2 a b}{4 b^{3}}+\frac{2 a}{4 b^{3}}$
$b \neq 0 \quad$
$=\frac{2 a b+2 a}{4 b^{3}}=\frac{a b+a}{2 b^{3}}=\frac{a(b+1)}{2 b^{3}}$

$$
\frac{2 a}{3}+\frac{a}{5}
$$

$$
\frac{3 m}{2}+\frac{4 m}{3}
$$

$$
\frac{2}{a}-\frac{3}{a^{2}}
$$

$$
\frac{a}{b}+\frac{b}{a}
$$

$$
\frac{2 x}{3 y}-\frac{5 y}{4 x}
$$

Express as single fractions in their simplest form
(a) $\frac{1}{2 \mathrm{x}}+\frac{1}{3 \mathrm{x}} \quad \mathrm{x} \neq 0$
(b) $\frac{2}{3 \mathrm{p}}-\frac{1}{4 \mathrm{p}} \quad \mathrm{p} \neq 0$
(c) $\frac{5}{3 \mathrm{a}}-\frac{1}{2 \mathrm{a}} \quad \mathrm{a} \neq 0$
(d) $\frac{2}{3 x}+\frac{4}{5 x} \quad x \neq 0$
(e) $\frac{1}{x}+\frac{2}{x^{2}} \quad x \neq 0$
(f) $\frac{3}{x^{2}}-\frac{2}{x} \quad x \neq 0$
(g) $\frac{4}{\mathrm{~m}} \cdot \frac{2}{\mathrm{~m}^{3}}$
$m \neq 0$
(h) $\frac{6}{\mathrm{n}^{2}}+\frac{1}{\mathrm{n}^{3}} \quad \mathrm{n} \neq 0$
(i) $\frac{1}{2 \mathrm{x}}-\frac{1}{\mathrm{x}^{2}}$
$x \neq 0$
(j) $\frac{2}{\mathrm{p}^{3}}-\frac{1}{3 \mathrm{p}} \quad \mathrm{p} \neq 0$
(k) $\frac{3}{4 \mathrm{~W}}+\frac{2}{\mathrm{w}^{2}}$
$\mathrm{w} \neq 0$
(l) $\frac{5}{3 \mathrm{u}}+\frac{1}{\mathrm{u}^{2}} \quad \mathrm{u} \neq 0$

Express as single fractions in their simplest form
(a) $\frac{1}{2 \mathrm{x}}+\frac{1}{3 \mathrm{x}} \quad \mathrm{x} \neq 0$
(b) $\frac{2}{3 \mathrm{p}}-\frac{1}{4 \mathrm{p}_{3}} \quad \mathrm{p} \neq 0$ $\frac{3}{6 x}+\frac{2}{6 x}=\frac{5}{6 x}$
$\frac{8}{12 p}-\frac{3}{12 p}=\frac{5}{12 p}$
(c) $\frac{5}{3 \mathrm{a}}-\frac{1}{2 \mathrm{a}} \quad 7^{\mathrm{a}} \mathrm{a}=0$
$\frac{3 a}{6 a}-\frac{3}{6 a}=\frac{7}{6 a}$
(e) $x^{x} \frac{x}{x}+\frac{2}{x^{2}} \quad x \neq 0$
$\frac{x}{x^{2}}+\frac{2}{x^{2}}=\frac{x+2}{x^{2}}$
(g) $\frac{4}{\mathrm{~m}} \cdot \frac{2}{\mathrm{~m}^{3}} \quad \mathrm{~m} \neq 0$
(d) $x^{x s} \frac{2}{3 x}+\frac{4 x^{3}}{5 x} \times 3 \times \underset{22}{\neq 0}$ $\frac{10}{15 x}+\frac{12}{15 x}=\frac{22}{15 x}$
(f) $\frac{3}{x^{2}}-\frac{2}{x} \quad x \neq 0$ $\frac{3}{x^{2}}-\frac{2 x}{x^{2}}=\frac{3-2 x}{x^{2}}$
(h) $\frac{6}{\mathrm{n}^{2}}+\frac{1}{\mathrm{n}^{3}} \quad \mathrm{n} \neq 0$
(i) $_{x^{x}} \frac{1}{2 \mathrm{x}}-\frac{1}{x^{2}} \times 2^{x^{2}}$ Lcm $=2 x^{2} \underset{x}{ } \neq 0$
(j) $\frac{2}{\mathrm{p}^{3}}-\frac{1}{3 \mathrm{p}} \quad \mathrm{p} \neq 0$ $\frac{x}{2 x^{2}}-\frac{2}{2 x^{2}}=\frac{x-2}{2 x^{2}}$
(k) $\frac{3}{4 \mathrm{w}}+\frac{2}{\mathrm{w}^{2}} \quad \mathrm{w} \neq 0$
(l) $\frac{5}{3 \mathrm{u}}+\frac{1}{\mathrm{u}^{2}} \quad \mathrm{u} \neq 0$

Adding/Subtracting Algebraic Fractions

Express as a single fraction in its simplest form
(d) $\frac{2}{k}+\frac{2 k-7}{k^{2}} \quad k \neq 0$
Q1. Find the original value of a car that has depreciated by 15% and is now $\begin{aligned} \text { valued at } £ 7649.99 \quad 85 \% & =7649.99 \\ 1 \% & =7649.99 \div 85=89.99 \ldots \\ 100 \% & =f 8999.99 x_{1} y_{1} \quad x_{2} y_{2}\end{aligned}$
Q2. State the equation of the line joining $(2,5)$ and $(4,-8)$
$y=m x+c$
Q3. Simplify $\sqrt{160}=\sqrt{16} \sqrt{10}$

$$
=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-8-5}{4-2}=\frac{-13}{2}
$$

$$
=4 \sqrt{10}
$$

$$
y=-\frac{13}{2} x+c
$$

Q4. Simplify $\frac{5 j^{2} \times 4 j}{2 j^{3}}$
$5=-\frac{13}{2}(2)+c$
$=\frac{20 j^{3}}{2 j^{3}}=10$
$S=-13+C$ $c=18$
$y=-\frac{13}{2} x+18$

Adding/Subtracting Algebraic Fractions

$$
\begin{aligned}
& \text { (i) }_{x(x-1) \frac{3}{x}-\frac{x}{x-1} x_{x}^{x} x_{x}^{x \neq 0,1}}^{x} \\
& \begin{array}{l}
\text { (ii) } \\
\times 4 \\
\times 4 \\
\frac{2 x-1}{3}-\frac{x-3}{4} \times 3
\end{array} \begin{array}{l}
\times 3 \\
\times 3(2 x-1)
\end{array} \\
& =\frac{3(x-1)}{x(x-1)}-\frac{x^{2}}{x(x-1)} \\
& \frac{4(2 x-1)}{12}-\frac{3(x-3)}{12} \\
& \underline{\frac{3 x-3-x^{2}}{x(x-1)}}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
=\frac{8 x-4}{12}-\frac{3 x-9}{12} \\
8 x-4-3 x+9
\end{array} \\
& \frac{8 x-4-3 x+9}{12} \\
& \frac{5 x+5}{12}
\end{aligned}
$$

$$
\begin{gathered}
3(x+2)-(x-5) \\
3 x+6-x+5
\end{gathered}
$$

Daily Practice
Q1. Calculate the area of the circle shown

Q2. Factorise $15 x^{2}-5 x y$
$5 x$
Q3. Multiply out and simplify $(3 m-1)(2 m+4)$

Q4. Simplify $3 x^{2}\left(2 x+x^{\frac{1}{2}}\right)$
L.I: Today we will be continuing to practise adding and subtracting fractions.
(iii)

$$
\frac{3}{x+4}+\frac{2}{x-5} \quad x \neq-4,5
$$

$$
\begin{array}{cc}
\frac{3(x-5)}{(x+4)(x-5)}+\frac{2(x+4)}{(x+4)(x-5)} & \text { Pg. } 145 \\
=\frac{3,3,5,6,7}{} \\
=\frac{3 x-15+2 x+8}{(x+4)(x-5)}=\frac{5 x-7}{(x+4)(x-5)}
\end{array}
$$ subtracting algebraic fractions.

$$
\frac{4}{x+2}-\frac{3}{x-1}
$$

$$
\frac{x}{2}+\frac{4 x-1}{x}
$$

$$
\frac{2}{y+2}+\frac{1}{y}
$$

$$
\frac{2 x}{x+1}-\frac{3}{x-1}
$$

$$
\frac{x-2}{4}+\frac{3 x-1}{5 x}
$$

$$
\frac{2}{x^{2}}-\frac{x+1}{2}
$$

Daily Practice
1.2.2016

$$
\begin{aligned}
& \text { pe } 0^{0^{0_{0}^{n}}} \text { Solve } \\
& \quad \frac{x+2}{x-4}=\frac{2 x+1}{x-2} \\
& \quad \frac{x+2}{x-4}-\frac{2 x+1}{x-2}=0 \\
& \quad(x+2)(x-2)-[(2 x+1)(x-4)]=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x}{4}=0 \\
& \times 6 \quad \times 4 \\
& x=0
\end{aligned}
$$

L.I: Today we will be learning how to muliply algebraic fractions.

Daily Practice 2.2.16

Q1. Multiply out and simplify $(3 x-4)\left(2 x^{2}+x-5\right)$
$\left.\begin{array}{l}\text { Q2. Simplify } \frac{2 x-4}{4 x^{2}-16} \\ \text { Q3. Simplify } \sqrt{600} \\ \sqrt{100} \sqrt{6}=10 \sqrt{6}\end{array} \rightarrow \begin{array}{c}6 x^{3}+3 x^{2}-15 x-8 x^{2}-4 x+20 \\ 6 x^{3}-5 x^{2}-19 x+20\end{array}\right\} \begin{aligned} & \frac{2(x-2)}{4\left(x^{2}-4\right)}=\frac{2(x-2)}{4(x+2)(x-2)}=\frac{2}{4(x+2)}\end{aligned}$
Q4. Write as a single fraction $\frac{2}{x} \times \frac{3}{y}=\frac{6}{x y}$
$=\frac{1}{2(x+2)}$

Dividing Algebraic Fractions
Examples:
(i) $\frac{v^{2} h}{9 d} \div \frac{2 v}{3 d^{2}}=\frac{v^{2} h}{9 d} \times \frac{3 d^{2}}{2 v}$
$=\frac{3 d^{2} v^{2} h}{18 d v} \div 3 d v$

(ii)
$\frac{24 x y}{35 z} \div \frac{20 x y}{21 z}=\frac{\frac{24 x y}{38 z}}{\frac{34 x y}{}} \times \frac{\frac{21 z}{20 x y} \div 7 z}{5} \div 4 x y$ $\frac{6}{5} \times \frac{3}{5}=\frac{18}{25}$

Daily Practice
3.2.16

Q1. Multiply out and simplify $(3 x-1)^{2}$
$9 x^{2}-6 x+1$
Q2. Factorise $\mathrm{x}^{2}-11 \mathrm{x}+24$

$$
(x-3)(x-8)
$$

Q3. Calculate the volume of a cone with diameter of base 16 cm and height 12 cm to 2 s.f.
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \pi \times 8^{2} \times 12=804.2 \rightarrow 800 \mathrm{~cm}^{3}(2 \mathrm{~s} f)$ Q4. Simplify fully $\frac{(x-4)^{2}}{x^{2}-12 x+32}=\frac{(x-4)(x-4)}{(x-8)(x-4)}=\frac{x-4}{x-8}$
L.I: Today we will be learning how to complete Exam style questions on Algebraic Fractions.
Homework Due Monday.
8. Simplify $\frac{n^{5} \times 10 n}{2 n^{2}}$. $\quad 3$
9. Express $\frac{7}{x+5}-\frac{3}{x} \quad x \neq-5, x \neq 0$ as a single fraction in its simplest form. 3
8. Simplify $\frac{8 p^{6}}{2 p^{3} \times p}$
9. Express

$$
\frac{2}{(x-4)}+\frac{5}{x}, \quad x \neq 0, x \neq 4,
$$

as a single fraction in its simplest form
7. Express as a single fraction

Marks
8. Simplify

$$
\frac{3 x-15}{(x-5)^{2}}
$$

2
9. Express

$$
\frac{3}{x}-\frac{4}{x+1}, \quad x \neq 0, \quad x \neq-1
$$

6. Express

Free worksheet created by MATHSprint. Algebraic Fractions - Add/Subtract 2:1

Algebraic Fractions - Multiply/Divide 1

1: Simplify the following as far as possible:

a) $\frac{7}{8 v} \times \frac{2}{5 v}$	b) $\frac{3 u}{5} \times \frac{7 u}{9}$	c) $\frac{9}{10 h} \times \frac{5 h}{4}$

d) $\frac{7 n}{4} \times \frac{3}{7 n}$
e) $\frac{4 x}{9} \times \frac{2 x}{3}$
f) $\frac{7}{6 r} \times \frac{10}{3 r}$

2: Simplify the following as far as possible:
$\begin{array}{lll}\text { a) } \frac{7}{10 f} \div \frac{5 f}{8} & \text { b) } \frac{6 t}{5} \div \frac{3}{4 t} & \text { c) } \frac{5 q}{7} \div \frac{9 q}{8}\end{array}$

2014 N5 Non -Calculator
8. simplify $\left.\frac{n^{5} \times 10 n}{2 n^{2}} . \quad \right\rvert\, \frac{10 n^{6}}{2 n^{2}}=n^{4,}$

$$
\begin{aligned}
& \text { 9. Express } \frac{x^{x}}{x+5}-\frac{3}{x} \quad \begin{array}{c}
x(6+5) \\
\times(x+5) \\
x \neq-5, x \neq 0 \text { as a single fraction in its simplest form. } \\
\frac{7 x}{x(x+5)}-\frac{3 x+15}{x(x+5)}=\frac{4 x-15}{x(x+5)}
\end{array} .
\end{aligned}
$$

Today we will be continuing to practise mixed algebraic fractions.

Homework Due Monday!

Today we will be marking homework.
Homework Due Today

Q1. Write in their simplest form
(i) ${\frac{(x+4)(x+5)}{(x+4)^{2}}}_{x \neq-4}=\frac{(x+4)(x+5)}{(x+4)(x+4)}=\frac{x+5}{x+4}$

$$
\begin{array}{ll}
\text { (i) } \begin{array}{ll}
\frac{5}{x}+\frac{3}{x^{2}} \quad \text { (ii) } \frac{2}{a}-\frac{3}{(a+4)} \quad a \neq-4,0 \\
\frac{5 x^{2}}{x^{3}}+\frac{3 x}{x^{3}} & \frac{2(a+4)}{a(a+4)}-\frac{3 a}{a(a+4)} / \text { denominator } \\
=\frac{5 x^{2}+3 x}{x^{3}} & \frac{2 a+8-3 a}{a(a+4)} \\
\frac{5 x+3}{x^{2}} & =\frac{-a+8}{a(a+4)}
\end{array}
\end{array}
$$

(ii) $\frac{(x+2)^{2}}{x^{2}-x-6} \quad x \neq-2,3$
(iii) $\frac{5 k m-20 m^{2}}{(k-4 m)^{2}} \quad k, m \neq 0$
$\frac{(x+2)(x+2)}{(x-3)(x+2)}$
$\frac{5 m(k-4 m)}{(k-4 m)(k-4 m)}$
$=\frac{x+2}{x-3}$
$=\frac{5 m}{k-4 m}$
(iii) ${ }_{x y}^{x y} \frac{a}{x}-\frac{b}{y}^{x x} x, y \neq 0$

$$
\text { (iv) } \frac{4}{x+3}+\frac{3}{x} \quad x \neq-3,0
$$

$\frac{a y}{x y}-\frac{b x}{x y}$

$$
=\frac{4 x}{x(x+3)}+\frac{3(x+3)}{x(x+3)}
$$

$$
\frac{a y-b x}{x y}
$$

$$
=\frac{4 x+3 x+9}{x(x+3)}
$$

$$
=\frac{7 x+9}{x(x+3)}
$$

$$
\begin{array}{ll}
x^{3} & \text { (vi) } \frac{x}{(x+1)}-\frac{x^{2}}{(x-4)} x \neq 4,-1 \\
\text { (v) } \frac{2 x+1}{x^{3} 4}-\frac{x+2}{x^{2}} & \frac{x(x-4)-3(x+1)}{(x+1)(x-4)} \\
\begin{array}{ll}
\frac{3(2 x+1)}{12}-\frac{2(x+2)}{12} & \\
\frac{6 x+3}{12}-\left(\frac{2 x+4}{12}\right) & \\
=\frac{4 x-1}{12}
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \text { (vii) } \frac{s^{2}}{t} \times \frac{3 t}{2 s} \quad t, s \neq 0 \\
& \text { (Vikii) } \frac{5 p^{2}}{8} \div \frac{p}{2} \\
& \frac{3 t s^{2}}{2 t s}=\frac{3 s}{2} \\
& \frac{5 p^{2}}{8} \times \frac{2}{P J} \\
& =\frac{10 p^{2}}{8 p} \div 2 p=\frac{5 p}{4} \\
& \text { (Viiii) } \frac{5 p^{2}}{8} \div \frac{p}{2}
\end{aligned}
$$

(ix) $\frac{3 x}{y} \times \frac{2 x+4}{x^{2}} \quad y, x \neq 0$
(x) $\frac{8 y}{2 x} \div \frac{4 y}{x^{3}} \quad x \neq 0$
$\frac{6 x^{2}+12 x}{x^{2} y}$ $\frac{8 y}{2 x} \times \frac{x^{3}}{4 y}$
$=\frac{6 x+12}{x y}$

Daily Practice
5.2.16

QI. Calculate the radius of a cylinder with a volume of $7288.16 \mathrm{~cm}^{3}$ and a height of 9 cm

Q2. Multiply out and simplify $(7 x-I)\left(x^{2}-3 x+4\right)$

Q3. Factorise $6 x^{2}+7 x-20$

Today we will be completing a check-up on algebraic fractions.
Please leave jotters here.
HW due Monday

