## Daily Practice

25.8.2017

Q1. Write each of the following as a decimal of hours
(a) 1 hour 30mins
(b) 20 minutes
(c) 3hours 45 mins
0.3 hrs
3.75 hrs
Q2. Write $1.529 \times 10^{-3}$ in normal form
0.001529
Q3. Find $14 \%$ of 3200 $10 \%$ of $3200=320$
$4 \%=32 \times 4=128$
$1 \%$ " " = 32
$14 \%=448$
Q4. Write 780000 in scientific notation
$7.8 \times 10^{5}$
Q5. Calculate the length of $x$ (calc.)
$x^{2}=15.5^{2}-13.2^{2}$

$$
x^{2}=66.01
$$

$$
x=\sqrt{66.01}=8.1 \mathrm{~cm}(1 \text { d.p. })
$$

## Angles in Triangles and Circles

Key things to remember:

- All the angles in a triangle add to get $180^{\circ}$
- Isosceles triangles have 2 equal sides +2 equel angles
- Equilateral triangles have 3 equal sides and 3 equal angles
$\left(60^{\circ}\right.$ each $)$
L.I: Today we will be learning about tangents to circles.


## Tangents to Circles

A tangent to a circle is a straight line that touches the circle at only one point.


Tangents to Circles - Investigation
What do we notice?
** A radius drawn to a tangent is perpendicular to the tangent


Tangents to Circles


Tangents to Circles
Examples:

1. Calculate the size of $x$

$$
\begin{aligned}
& x^{\circ}=180^{\circ}-(90+17)^{\circ} \\
& ==73^{\circ} \\
& y=180^{\circ}-73^{\circ}=107^{\circ}
\end{aligned}
$$

2. What is the value of the angles
(i) $\mathrm{POO}=90^{\circ}$ (tangent)
(ii) $\hat{Q} R$
$=360^{\circ}-\left(90^{\circ}+90^{\circ}+131^{\circ}\right)$
$=360^{\circ}-311^{\circ}$
$=49^{\circ}$


## Daily Practice

28.8.2017

$$
\begin{aligned}
& \text { Q1. Solve } 5(x-1)=3(x+2) \\
& 5 x-5=3 x+6 \\
& \begin{aligned}
& 2 x-5=6 \\
& 2 x=21
\end{aligned} \quad \underline{x}=5.5 \\
& \text { Q2. Find } 67 \% \text { of } 800 \\
& \begin{aligned}
1 \% \text { of } 800 & =8 \quad \begin{aligned}
& 67 \\
& 67 \%=\frac{8}{536}
\end{aligned}
\end{aligned} \\
& \text { Q3. } 2 \frac{1}{3}-\frac{3}{4}=\frac{7}{3}-\frac{3^{3}}{4}=\frac{28}{12}-\frac{9}{12}=\frac{19}{12}=1 \frac{7}{12} \\
& \text { Q5. Round } 6781000 \\
& \text { to } 1 \text { significant figure } \\
& \rightarrow 7000000
\end{aligned}
$$

Q4. Rearrange the formula so $t$ is the subject

$$
\begin{aligned}
& x t+5=b \\
& x t=b-5 \\
& t=\frac{b-s}{x} \text { or } t=(b-5) \div x
\end{aligned}
$$

L.I: Today we will be continuing to learn about tangents to circles.
S.C: I will be able to use my knowledge of tangents to circles to find missing angles in the triangles created.


Triangles in semi- circles Investigation


1. Draw some circles.
2. Draw a diameter on each
3. Draw a triangle in each circle using the diameter as the base. The top of the triangle must touch the circumference.
4. Measure the angle at the top of the triangle.

> Daily Practice
30.8.2017

Q1. Factorise $6 x^{2}-24 x$

$$
6 x(x-4)
$$

Q2. Multiply out and simplify $7(x-1)+2(x+3)$
$9 x-1$
Today we will be continuing to learn about angles in circles.
Q3. Calculate the distance John travels if he runs at 10 mph for 45 minutes

$$
D=T_{x} S=10 \times 0.75=7.5 \text { miles }
$$

Q4. Round 8716.5 to the nearest unit
$\rightarrow 8717$
Q5. John earns $£ 2200$ per month, he gets a pay rise of $3.5 \%$. How much is he now earning $2200 \times 1.035=12277$

Triangles in semi- circles
Examples:

1. Calculate the size of angles $p^{\circ}$ and $q^{\circ}$
$p=180^{\circ}-(48+90)^{\circ}$
$=42^{\circ}$

$$
q=180^{\circ}-(90+73)^{\circ}=17^{\circ}
$$

2. Calculate the length of $B C$
$B C_{2}^{2}=15^{2}-13^{2}$
$B C^{2}=56$

$$
\begin{aligned}
& C=56 \\
& B C=\sqrt{56}=7 \cdot 48 \mathrm{~cm}(2 d \cdot p)
\end{aligned}
$$



Triangles in semi- circles Investigation
What do we notice?
Given triangle $A B C$, where $A C$ is the diameter and $B$ is on the circumference. Angle $A \widehat{B C}$ is right-angled.

http://www.mathopenref.com/semiinscribed.html
¥

Q1. In each of the diagrams below AB is a diameter. Find the missing angles in each diagram.


Q2. Find the length of the diameter $A B$ in each of the circles below, given the other 2 sides of


Q1. In each of the diagrams below AB is a diameter. Find the missing angles in each diagram.


Q2. Find the length of the diameter $A B$ in each of the circles below, given the other 2 sides of


Chords in Circles


A chord is a line that joins two points on the circumference of a circle.

## Daily Practice

 31.8.2017Q1. State the equation of the line that passes through $(-1,3)$ and $(0,2)$
$m=\frac{2-3}{0-(-1)}=\frac{-1}{1}=-1 \quad y=-1 x+2$
Q2. Calculate the value of x in the triangle shown
$\operatorname{Cos} 34^{\circ}=\frac{17}{x} \quad x=\frac{17}{\cos 34^{\circ}}=20 \cdot 5 \mathrm{~cm}(1 d \mathrm{p}) \times$.
$x \cos 34^{\circ}=17$
Q3. Multiply out and simplify $4(x-6)-2(x+1)$

$$
4 x-24-2 x-2
$$

Q4. $2 \frac{2}{3} \div \frac{3}{5} \times \frac{5}{3}=\frac{2 x-26}{9}$
$=\frac{8}{3} \times \frac{5}{3}=\frac{40}{9}=4 \frac{4}{9}$
Q5. Rearrange the formula $V=\pi r^{2} \mathrm{~h}$ so that ' $r$ ' is the subject

$$
\begin{aligned}
& r^{2}=\frac{V}{\pi h} \\
& r=\sqrt{\frac{V}{\pi h}}
\end{aligned}
$$

Q1. In each of the diagrams below AB is a diameter. Find the missing angles in each diagram.


Q2. Find the length of the diameter $A B$ in each of the circles below, given the other 2 sides of


Chords in Circles - Investigation

1. Draw 3 circles of any size
2. Draw a chord on each circle that isn't a diameter.
3. Draw a line from the centre of the circle perpendicular to the chord
4. Measure the distance from each end of the chord to the line you have drawn.


## Chords in Circles - Investigation

$\qquad$
What do we notice?

- A line drawn from the centre of a circle perpendicular to a chord bisects the chord.
Example:
Calculate the sizes of the missing angles

$$
\begin{aligned}
a & =180^{\circ}-\left(90^{\circ}+40^{\circ}\right) \\
& =50^{\circ} \\
d & =50^{\circ} \quad e=40^{\circ}
\end{aligned}
$$



## Chords in Circles

Use the symmetry properties of the circle to find the missing angles in the diagrams below. In each diagram $A B$ is a diameter.


Chords in Circles
Use the symmetry properties of the circle to find the missing angles in the diagrams below.

In each diagram $A B$ is a diameter.

$180^{\circ}-\left(90^{\circ}+50^{\circ}\right)$
$a^{\circ}=40^{\circ} \quad b=40^{\circ}$ C. $50^{\circ}$

$e^{\circ}=180^{\circ}-\left(90^{\circ}+57^{\circ}\right)$

$$
0^{\circ}=33^{\circ} \quad d \div 33^{\circ}
$$

$f^{\circ}=57^{\circ}$

$g^{\circ}=28^{\circ}$
$h^{\circ}=180^{\circ}-\left(90^{\circ}+28^{\circ}\right)$
$h^{\circ}=62^{\circ} \quad i=62^{\circ}$
$k=180^{\circ}-62^{\circ}=118^{\circ}$
$\stackrel{O=31^{\circ}}{=} \quad C \Rightarrow 180^{\circ}-118^{\circ}=62^{\circ}$
$62^{\circ} \div 2=31^{\circ}$
$=30^{\circ}$
$\qquad$
教


Use the symmetry properties of the circle to find the missing angles in the diagrams below.


Chords in Circles
2. Calculate the length of $A C$
when the radius is 5 cm
and angle $B A C=35^{\circ}$

$\cos 35^{\circ}=\frac{x}{5}$

$$
\begin{aligned}
x & =5 \cos 35^{\circ} \\
x & =4.1 \mathrm{~cm}(1 \text { d.p. }) \quad A C=4.1 \times 2=8.2 \mathrm{~cm}
\end{aligned}
$$

## Daily Practice

1.9.2017

Q1. Calculate the volume of a cuboid with length 5 cm , breadth 4.5 cm and height $10 \mathrm{~cm} \quad V=5 \times 4.5 \times 10$

$$
V=22 \mathrm{scm}^{3}
$$

Q2. Given a bag of 3 yellow, 4 red and 3 green sweets. What is the probability of picking a red sweet? $\frac{4}{10}=\frac{2}{5}$
Q3. $5 \frac{1}{3}-3 \frac{2}{5}=\frac{16}{3}-\frac{17}{5}=\frac{80}{15}-\frac{51}{15}=\frac{29}{15}=1 \frac{14}{15}$

Q4. State the equation of the line joining $(-4,5)$ and $(0,-3)$

$$
\begin{gathered}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{0-(-4)}=\frac{-8}{4}=-2 \\
g=-2 x-3
\end{gathered}
$$

Today we will be practising mixed circle questions.

Questions: Calculate d for each


Calculate x for each


In the above diagram,

- $O$ is the centre of the circle
- PQ is a diameter of the circle
- PQR is a straight line
- RS is a tangent to the circle at S
- angle OPS is $28^{\circ}$.

Calculate the size of angle QRS.


In the above diagram,

- $O$ is the centre of the circle
- PQ is a diameter of the circle
- PQR is a straight line
- RS is a tangent to the circle at S
- angle OPS is $28^{\circ}$.

Calculate the size of angle QRS.
2.


In the circle

- PB is a diameter
- CR is a tangent to the circle at point P
- Angle BCP is $48^{\circ}$

Calculate the sizc of angle EPR.
2.


In the circle

- PB is a diameter
- CR is a tangent to the circle at point P
- Angle BCP is $48^{\circ}$.

Calculate the size of angle EPR.

$$
\begin{aligned}
C F t= & 180^{\circ}-\left(48^{\circ}+90^{\circ}\right) \\
& =180^{\circ}-138^{\circ} \\
& =\underline{\underline{2}} \\
\hat{E P B} & =90^{\circ}-42^{\circ}=\underline{8^{\circ}} \\
E \hat{P R} & =48^{\circ}+90^{\circ}=138^{\circ}
\end{aligned}
$$

3. The diagram becow shows she cross.sccion of the unncl. It consisis of part of a circle with a horizontal base


The radius of the circle is 1.95 metres and the width of the base is 2.5 metres Calculate the height of the tunnel.

4. The tank has a circular cross-section as shown in the diagram below.

†Depth of oil
The radius of the circle, centre $O$, is 1.9 metres.
The width of the surface of the oil, represented by AB in the diagram, is 2.2 metres.

Calculate the depth of the oil in the tanker.

Daily Practice
Q1. Write 185000 in scientific notation

$$
1.85 \times 10^{5}
$$

Q2. Calculate the radius of a circle that has an area of 26.8 cm


Q4. Calculate the height of a cuboid that has volume $1500 \overline{\mathrm{~cm}^{3}}$ length 30 cm and breadth $2.5 \mathrm{~cm} \quad V=16 \mathrm{~h}$

$$
1500=30 \times 2.5 \times h
$$

$$
h=\frac{1500}{75}=20 \mathrm{~cm}
$$

Q5. State the equation of the line joining $(-2,5)$ and $(-1,7)$

$$
\begin{aligned}
& m=\frac{7-5}{-1-(-2)}=\frac{2}{1}=2 \\
& y=2 x+9 \quad y=m x+c \\
& y=2 x+c \\
& 7=2(-1)+c \\
& 9=c
\end{aligned}
$$

Today we will be continuing to practise mixed questions on angles in circles.
5.


The tangent SV touches the circle, centre O , at T. Angle PTQ is $37^{\circ}$ and angle VTR is $68^{\circ}$.
$\hat{P Q R}=53^{\circ}+68^{\circ}=\underline{\underline{2} 1^{\circ}}$ Calculate the size of angle $P Q R$.
5.


The tangent SV touches the circle, centre O , at T . Angle PTQ is $37^{\circ}$ and angle VTR is $68^{\circ}$.
Calculate the size of angle $P Q R$.
6.


8.


AD is a diameter of a circle, centre O .
B and C are points on the circumference of the circle.
$44^{\circ}-25^{\circ}=\underline{19^{\circ}=B \hat{A C}}$
Angle $\mathrm{CAD}=25^{\circ}$
Angle BDA $=46^{\circ}$.
Calculate the size of angle BAC

8.

Daily Practice
7.9.2017

Q1. Multiply out and simplify $7(3 k-3)+2(k+4)$
$2 \mid k-21+2 k+8$
$23 k-13$
Q2. Rearrange the formula $3 g+2 h^{2}=p$ such that ' $h$ ' is the subject

$$
\begin{aligned}
2 h^{2} & =p-3 g \\
h^{2} & =\frac{p-3 g}{2}
\end{aligned} \quad h=\sqrt{\frac{p-3 g}{2}}
$$

Q3. State the equation of the line joining $(-1,3) \overline{\text { and }(0, ~} 8$ )
$m=\frac{8-3}{0-(-1)}=\frac{5}{1}=5 \quad y=5 x+8$
Q4. Calculate the length of $x$
$\cos 43^{\circ}=\frac{9}{x}$
$x \cos 43^{\circ}=9$

$$
x=\frac{9}{\cos 43^{\circ}}=123 \mathrm{~cm}(1 \text { d.p. })
$$


9.

10. $\qquad$
10 centimetres.

The water surfee is 8 centimetres wide.


Calculate the depth, $\boldsymbol{d}$, of water in the guttering.
9.

(a) $\begin{aligned} & \text { MTO }=90^{\circ}-77^{\circ}-13^{\circ} \\ & 180^{\circ}-\left(2 \times 13^{\circ}\right) \\ & =180^{\circ}-26^{\circ}=154^{\circ} \\ & =M \hat{T} T\end{aligned}$
(b) $\cos 13^{\circ}=\frac{N T}{8 \times 8}$
Q $\times 8 \quad 8 \cos 13^{\circ}=N T$

The tangent PQ touches the circle, centre O , at T ,
$N T=7.8 \mathrm{~cm}$
Angle MTP is $77^{\circ}$.
(a) Calculate the size of angle MOT $M T=7.8 \times 2=15.6 \mathrm{~cm}$
b) The radius of the circle is 8 centimetr

Calculate the length of chord MT
10.


Calculate the depth $d$ of water in the guttering

