12.6.2017 Daily Practice Q1. A pair of shoes cost £84, they are reduced by 30% in the sale, how much are they now? $\begin{bmatrix} 10^{7}, & 6 \\ 90^{7}, & 6 \\ 90^{7}, & 6 \\ 10^{9}, & 90 \\ 10^{9}, & 10^{9$

Q2. Calculate the volume of a cylinder with radius 12cm and height 70cm $\sqrt{\frac{1}{2} \gamma_1^2 h} = \frac{1}{\gamma_1^2 \kappa_1^2} \frac{1}{\kappa_1^2 \kappa_2^2} = \frac{3|\frac{1}{6}\frac{1}{2}+25cm^3}{25cm^3}$

Q3.
$$2\frac{2}{3} \div \frac{1}{5} = \frac{5}{3} \times \frac{5}{1} = \frac{40}{5} = \frac{3}{3}$$

Q4. State the equation of the line joining (-3, 2) and (-2, 1) $m = \frac{y_1 \cdot y_1}{x_1 \cdot x_1} = \frac{1 \cdot 2}{-1 \cdot 2} = \frac{-1}{1} = \frac{y_1 \cdot y_2}{2z_1 - 1(-3) + 2} = \frac{y_2 \cdot x_2 - 1}{2z_1 - 1(-3) + 2}$ Q5. State where the line y = 3x - 6 cuts the x and y axes.

y-axis =7 x =0 z-axis = y=0 در۔ بالا =- او

(<u>0,-</u>b)

Today we will be learning how to rearrange formula.

Changing the subject of Formulae

In a formula, the subject is always the letter that equals the formula. For example, in the formula $E = MC^2$, E is the subject.

Changing the subject means rearranging the formula to get it in terms of a different letter like M.

Remember opposite operations!

Examples:

Change the subject of each of the following to the letter in brackets:

(iv) w = 3y + 2

1. Change the subject of each formula to x.

(a)	y = x + 3	(b)	y = x - 5	(c)	y = x + a
(d)	y = x - b	(e)	y = 3x	(f)	y = 10x
(g)	y = kx	(h)	y = ax	(i)	y = 3p + x
(j)	y = x - 5t	(k)	y = 2x + 1	(l)	y = 3x - 7
(m)	y = 7x + 4a	(n)	y = 3b + 4x	(0)	y = 8 + 10x

ī

1. Change the subject of each formula to x.

(a)	y = x + 3	(b)	y = x - 5	(c)	y = x + a
(d)	y = x - b	(e)	y = 3x	(f)	y = 10x
(g)	y = kx	(h)	y = ax	(i)	y = 3p + x
(j)	y = x - 5t	(k)	y = 2x + 1	(I)	y = 3x - 7
(m)	y = 7x + 4a	(n)	y = 3b + 4x	(0)	y = 8 + 10x

September 22, 2017

Solve the following equations

Today we will be continuing to learn how to change the subject of a formula.

Make 'x' the Subject

$$2x + 3 = 19$$

$$2x = 16$$

$$2x + 3 = 19$$

$$2x = 16$$

$$2x = 16$$

$$2x = 16$$

$$33 = 5x - 2$$

$$35 = 5x$$

$$33 = 5x - 2$$

$$35 = 5x$$

$$4x = 13$$

$$5x = 5x$$

$$5x = 15$$

(a)	y = ax + b	(b)	y = mx + c	(c)	t = sx - r
(d)	p = qx + 2r	(e)	m = fx - 3n	(f)	a = b + cx
(g)	k = h - mx	(h)	d = 3b + cx	(i)	g = kc - hx

Use the timetable below to work out the latest time he should leave for the bus.

Today we will be continuing to learn how to change the subject of a formula.

Changing the subject - Straight Line

The gradient of a line can only be read from the equation if it is of the form y = mx + c.

Examples: State the gradient of the following lines

^{10.} James lives in Balermo and has a dentist appointment in Edinburgh at 3.45pm. James will be traveiling by bus. He has a 12-minute walk to the bus stop at Cockburn Crescent. The dentist is a 5-minute walk from the stop at Haymarket.

Today we will be continuing to learn how to rearrange formulae.

Changing the subject

Examples: Change the subject of the formula to h

1. Make *x* the subject of each formula.

(a)	$y = \frac{3}{x}$	(b)	$d = \frac{c}{x}$	(c)	$m = \frac{y}{x}$
(d)	$s = \frac{a+2}{x}$	(e)	$w = \frac{z - 1}{x}$	(f)	$a = \frac{b+c}{x}$
(g)	$a = \frac{x+8}{9}$	(h)	$k = \frac{x-5}{2}$	(i)	$p = \frac{3-x}{4}$
(j)	$y = \frac{2}{x} + 1$	(k)	$z = \frac{6}{x} - 7$	(l)	$h = \frac{m}{x} + k$

Pegasys

1. Make *x* the subject of each formula.

(a)	$y = \frac{3}{x}$	(b)	$d = \frac{c}{x}$	(c)	$m = \frac{y}{x}$
(d)	$s = \frac{a+2}{x}$	(e)	$w = \frac{z-1}{x}$	(f)	$a = \frac{b+c}{x}$
(g)	$a = \frac{x+8}{9}$	(h)	$k = \frac{x-5}{2}$	(i)	$p = \frac{3-x}{4}$
(j)	$y = \frac{2}{x} + 1$	(k)	$z = \frac{6}{x} - 7$	(1)	$h = \frac{m}{x} + k$
			л		

Pegasys

Make 'x' the Subject

September 22, 2017

Today we will be continuing to practise questions on changing the subject.

Changing the subject (with square roots)					
Examples: Rearrange the following	so that 'a' is the subject				
(i) $t = \sqrt{a} + 3$ t -3 = \sqrt{a}	(iii) $t = \frac{a^2}{b}$				
$(t-3)^2 = \alpha$	$bt = a^2$				
$\alpha = (t-s)^2$	a=Vbt				
(iii) $r = 5a^{2} + 3$ $r - 3 = 5a^{2}$ $r - 3 = 5a^{2}$ $r - 3 = a^{2}$ $r - 3 = a^{2}$ $r - 3 = a^{2}$	(iv) $h = \sqrt{\frac{a}{b}}$ $h^2 = \frac{a}{b}$ $h^2 b = a$ $a = h^2 b$				

Change the subject of each formula to k.

(a)	$y = \sqrt{k}$	(b)	$x = \sqrt{k}$	(c)	$m = \sqrt{k}$
(d)	$a = \sqrt{\frac{k}{b}}$	(e)	$c = \sqrt{\frac{k}{d}}$	(f)	$h = \sqrt{\frac{k}{g}}$
(g)	$s = \sqrt{\frac{t}{k}}$	(h)	$q = \sqrt{\frac{p}{k}}$	(i)	$w = \sqrt{\frac{z}{k}}$
(j)	$r = k^2$	(k)	$ab = k^2$	(1)	$\frac{p}{q} = k^2$
(m)	$y = x + k^2$	(n)	$c = k^2 - d$	(0)	$x = 3k^2 - 1$

Change the subject of each formula to k.

(a)	$y = \sqrt{k}$	(b)	$x = \sqrt{k}$	(c)	$m = \sqrt{k}$
(d)	$a = \sqrt{\frac{k}{b}}$	(e)	$c = \sqrt{\frac{k}{d}}$	(f)	$h = \sqrt{\frac{k}{g}}$
(g)	$s = \sqrt{\frac{t}{k}}$	(h)	$q = \sqrt{\frac{p}{k}}$	(i)	$w = \sqrt{\frac{z}{k}}$
(j)	$r = k^2$	(k)	$ab = k^2$	(1)	$\frac{p}{q} = k^2$
(m)	$y = x + k^2$	(n)	$c = k^2 - d$	(0)	$x = 3k^2 - 1$

Today we will be continuing to learn how to change the subject of a formula.

Daily Practice21.6.2017Q1. Round 0.0008762 to 3 significant figures $\rightarrow 0.0008766$ Q2. Find 18% of 900 900 $\div 100 \times 18 \times 162$ Q3. Multiply out and simplify 7(2c + 3) - 5(c + 5)|4c+2|-5c-25|qc-4Q4. Rearrange the formula h + 2g = p such that g is the subject2g = p-hg = p-hQ5. Calculate the volume of a cylinder with diameter 6cm and height 23cm $V = Tr x_3^2 \times 23$ $V = 207 Tr = 650.3 cm^3$ (13.p)

Today we will be continuing to practise questions on changing the subject.

Examples: Make 't' the subject of the formula

(a) Express y = 4x + c in terms of x.

(b) Express P = 3(2a - 4d) in terms of a.

(b) Express $H = ax^2 + m$ in terms of x.

(d) Express
$$M = \frac{4uw}{v}$$
 in terms of w.

(e) Express $P = \frac{1}{2}ac + d$ in terms of a.

(f) Express
$$T = u + \frac{v}{w}$$
 in terms of v.
(g) Express $D = \frac{m}{n} - p$ in terms of n.

September 22, 2017

(h) Express $G = \sqrt{u + v^2}$ in terms of v.

Daily Practice	22.6.2017
Q19 + 8 + 13	

Q2. Rearrange the formula y = mx + c such that x is the subject

Q3. Find the cost of a jumper that was £30 and marked 15% off in the sale

Q4.91 x 2000

Q5. $1\frac{1}{3}-\frac{2}{5}$