Daily Practice
12.6.2017

Q1. A pair of shoes cost $£ 84$, they are reduced by 30% in the sale, how much are they now? 10% of $\begin{aligned} & 84=\{8 \cdot 40 \\ & 30 \% \text { of } 84=8 \cdot 40 \times 3=£ 15 \cdot 20\end{aligned}$ $30.84-f 15.20=\{58.80$
Q2. Calculate the volume of a cylinder with radius 12 cm and height $70 \mathrm{~cm} \quad V-r_{i}^{2} \mathrm{~h}=\pi \times 12^{2} \times 70=31667.2 \mathrm{scm}$

Q3. $2 \frac{2}{3} \div \frac{1}{5}=\frac{8}{3} \times \frac{5}{1}=\frac{40}{3}=13 \frac{1}{3}$
Q4. State the equation of the line joining $\begin{gathered}x,-3,2) \\ (-3)\end{gathered}$ and $(-2,1)$ $m=\frac{y_{2}-y_{1}}{x_{1}-x_{1}}=\frac{1-2}{-2-(3)}=\frac{-1}{1}=-1 \quad \begin{aligned} & y=m x+c \\ & 2=-1(-3)+c\end{aligned} \quad c=-1 \quad y=-x-1$
Q5. State where the line $y=3 x-6 \begin{gathered}2=3+c \\ \text { cuts the } x\end{gathered}$ and y axes.
x-axis $\Rightarrow y=0$
$\begin{aligned} 3 x-6 & =0 \\ 3 x & =6\end{aligned}$ $\begin{aligned} y-a x^{3} & \Rightarrow x=0 \\ y & =-6\end{aligned}$
$3 x=6$
$x=2 \quad(2,0)$

Changing the subject of Formulae
In a formula, the subject is always the letter that equals the formula. For example, in the formula $\mathrm{E}=\mathrm{MC} C^{2}, \mathrm{E}$ is the subject.

Changing the subject means rearranging the formula to get it in terms of a different letter like M

Changing the subiect

Examples:
Change the subject of each of the following to the letter in brackets:

1. Change the subject of each formula to x
(a) $y=x+3$
(b) $y=x-5$
(c) $y=x+a$
(d) $y=x-b$
(e) $y=3 x$
(f) $y=10 x$
(g) $y=k x$
(h) $y=a x$
(i) $y=3 p+x$
(j) $y=x-5 t$
(k) $y=2 x+1$
(l) $y=3 x-7$
(m) $y=7 x+4 a$
(n) $y=3 b+4 x$
(o) $y=8+10 x$

Daily Practice

 14.6.2017Solve the following equations
(a) $2 x=15$ $2 x=2$
$x=7.5$
(b) $\begin{aligned} 3 x-1 & =14 \\ +1 & +1 \\ 3 x & =15 \\ \div 3 & \div 3\end{aligned}$
(e) $\frac{1}{2} x+2=20$ $x+4=40$
(c) $8 x+3=6 x-7$
$\begin{aligned}-6 x & -6 x \\ 2 x+3 & =-7 \\ -3 & -3 \\ 2 x & =-10\end{aligned}$
$-8-8$
$2 x=9$
$x=4.5$
(d) $2(x+4)=17$ $2 x+8=17$
(f) $\frac{40}{x}+5=25$
$40+5 x=25 x$
$40=20 x$ $2=x \quad y=2$

Today we will be continuing to learn how to change the subject of a formula.

Make ' x ' the Subject

$$
x+\frac{4}{4}=10
$$

$$
x=6
$$

$x-8=29$
$x-p=q$
$x=q+p$
$x+r=d$
$x=d-r$

Make ' x ' the Subject

$$
\begin{array}{rlrl}
2 x & =10 & 2 x & =10 \\
x & =5 & \vdots 2 & =-2 \\
x & x & =\frac{10}{2} \\
& x & =5
\end{array}
$$

$$
5 x=30
$$

$$
x=6
$$

$$
3 x=d \quad x=\frac{d}{3}
$$

$$
r x=q
$$

$$
x=\frac{q}{r}
$$

Make ' x ' the Subject

Make ' x ' the Subject

$$
\begin{aligned}
& 33=5 x-2 \\
& \begin{aligned}
35 & =5 x \\
7 & =x \quad x
\end{aligned} \quad x=7 \\
& 27=6 x+9 \quad \begin{aligned}
& 6 x+9=27 \\
& 6 x=18 \\
& x=3
\end{aligned} \\
& u=5 x-s \quad \begin{aligned}
5 x & =u+s \\
x & =\frac{u+s}{5}
\end{aligned} \\
& g=f x+m \\
& \begin{array}{l}
f x=g-m \\
x=\frac{g-m}{f}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 2 x+3=19 \quad 2 x=16 \\
& 2 x=-\frac{16}{-3} \quad x=8 \\
& 4 x-6=26 \\
& 4 x=32 \\
& x=8 \\
& k x-f=13 \\
& \begin{array}{c}
k x=13+f \\
-k \\
-k
\end{array} \\
& 5 x+t=s \\
& 5 x=s-t \\
& y=\frac{s-t}{5} \\
& \downarrow \\
& x=\frac{13+f}{k}
\end{aligned}
$$

(a) $y=a x+b$
(b) $y=m x+c$
(c) $t=s x-r$
(d) $p=q x+2 r$
(e) $m=f x-3 n$
(f) $a=b+c x$
(g) $k=h-m x$
(h) $d=3 b+c x$
(i) $g=k c-h x$
10. James lives in Balerno and has a dentist appointment in Edinburgh at 3.45 pm .

James will be travelling by bus. He has a 12 -minute walk to the bur stop at Cockburn Crescent. The dentist is a 5 -minute walk from the stop at Haymarket.
Use the timetable below to work out the latest time he should leave for the bus. You must show all working! 3 marks

$2.51 \mathrm{pm} \xrightarrow{12 \text { mins }} 3.03 \mathrm{pm} \quad 3.40 \mathrm{pm} \xrightarrow{5 \mathrm{~min}} 3.45 \mathrm{pm}$

Changing the subject - Straight Line

The gradient of a line can only be read from the equation if it is of the form $y=m x+c$.

Examples: State the gradient of the following lines $y=m x+c$
(a) $3 x-2 y+5=0$

(b) $\begin{aligned} 2 x-y & =4 \\ +y & +y\end{aligned}$
$1.5 x+2.5=y$
$y=1.5 x+2.5$
$m=1.5$
$2 x=4+y$
$2 x-4=y$
$y=2 x-4$
$m=2$
(c) $3 y+5 x=7$
$3 y=7-5 x$
$y=\frac{7}{3}-\frac{5}{3} x$
$y=-\frac{5}{3} x+\frac{7}{3}$
$M=\frac{-5}{3}$
$M=\frac{-5}{3}$

Today we will be continuing to learn how to change the subject of a formula.

Daily Practice 16.6.2017

Q1. Find 15% of $780780 \div 10=7878+(78 \div 2)=117$
Q2. Multiply out and simplify $2(3 x+4)-8(x+5)$

$$
6 x+8-8 x-40
$$

Q3. Share $£ 420$ in the ratio $2: 32 x-32$
$\begin{array}{lll}420 \div 5=84 & 84 \times 3=25,2 & 168: 252 \\ 84 \times 2=168\end{array}$
Q4. Factorise $3 g^{2} h-6 g$
$3 g(g-2)$
Q5. Find the median and range of $-2,3,4,5,7,8+5 \div 2-4.5$

$$
8-(-2) 8+2=10
$$

Today we will be continuing to learn how to rearrange formulae.

Changing the subject

(ii) $\begin{aligned} t & =\frac{3 b+a}{(h)} \\ h t & =3 b+a \\ h & =\frac{3 b+a}{t}\end{aligned}$
(iii) $q=\frac{h-5}{t}$ xt \quad t
(iv) $s=\frac{5}{h}+t$
$q t=h-5$
$\begin{aligned} & q t+5=h \\ & h=q t+5\end{aligned}$

$$
\begin{aligned}
& s h=5+t h \\
& \text {-th } \quad-t h \\
& s h-t h=5 \\
& h(s-t)=5 \\
& h=\frac{5}{s-t}
\end{aligned}
$$

1. Make x the subject of each formula.
(a) $y=\frac{3}{x}$
(b) $d=\frac{c}{x}$
(c) $m=\frac{y}{x}$
(d) $s=\frac{a+2}{x}$
(e) $w=\frac{z-1}{x}$
(f) $a=\frac{b+c}{x}$
(g) $\quad a=\frac{x+8}{9}$
(h) $k=\frac{x-5}{2}$
(i) $p=\frac{3-x}{4}$
(j) $y=\frac{2}{x}+1$
(k) $z=\frac{6}{x}-7$
(I) $\quad h=\frac{m}{x}+k$
2. Make x the subject of each formula.

Make ' x ' the Subject

(a) $y=\frac{3}{x}$
(b) $d=\frac{c}{x}$
(c) $m=\frac{y}{x}$
(d) $s=\frac{a+2}{x}$
(e) $w=\frac{z-1}{x}$
(f) $a=\frac{b+c}{x}$
(g) $\quad a=\frac{x+8}{9}$
(h) $k=\frac{x-5}{2}$
(i) $p=\frac{3-x}{4}$
(j) $y=\frac{2}{x}+1$
(k) $z=\frac{6}{x}-7$
(l) $h=\frac{m}{x}+k$
$x^{2}=144$
$x= \pm \sqrt{144}= \pm 12$
$x^{2}=r$
$x= \pm \sqrt{r}$

$2 x^{2}=98$	$x^{2}=\frac{98}{2}$
$x^{2}=49$	
$x= \pm \sqrt{49}= \pm 7$	
$r x^{2}=t$	
$x^{2}=\frac{t}{r}$	
$x= \pm \sqrt{\frac{t}{r}}$	$x= \pm \sqrt{\frac{98}{2}}$

Daily Practice
19.6.2017

Q1. Round 182116 to 2 significant figures

$$
\longrightarrow 180000
$$

Q2. Calculate the volume of a cylinder with diameter 15 cm and
height 23 cm . $\quad V=\pi r^{2} h=\pi \times 7.5^{2} \times 23=4064.4 \mathrm{~cm}^{3}(1 \mathrm{~d} . \mathrm{p})$
Q3. Multiply out and simplify $7(2 k+2)-3(k+4)$
$14 k+14-3 k-12$
Q4. Rearrange the formula $h=g c+k$ such that ' c ' is the

$$
\begin{aligned}
& h=g c+k \text { such that 'c' is the } \\
& h-k=g c \\
& \frac{h-k}{g}=c \quad c=\frac{h-h}{g} \quad(h-k) \div g
\end{aligned}
$$

Q4. Rearrange the formula $h-k=g c$
subject

$$
\begin{aligned}
& x^{2}+6=35 \\
& x^{2}=29 \\
& x= \pm \sqrt{29} \\
& \begin{aligned}
& 2 x^{2}-b=15 \\
&+b \\
& 2 x^{2}=15+b
\end{aligned} \quad x=\sqrt{\frac{15+b}{2}} \\
& x^{2}=\frac{15+b}{2} \\
& p x^{2}+m=n \\
& \begin{aligned}
p x^{2} & =n-m \\
x^{2} & =\frac{n-m}{p}
\end{aligned} \quad x=\sqrt{\frac{n-m}{p}} \\
& r x^{3}-u=2 s \\
& r x^{3}=2 s+u \\
& x^{3}=\frac{2 s+4}{r} \\
& x=\sqrt[3]{\frac{25+4}{r}} \\
& \text { Make ' } x \text { ' the Subject } \\
& x>0
\end{aligned}
$$

Changing the subject (with square roots)
Examples: Rearrange the following so that ' a ' is the subject
(i) $t=\sqrt{a}+3$
$t-3=\sqrt{a}$
(ii) $t=\frac{a^{2}}{b}$
$(t-3)^{2}=a$
$a=(t-3)^{2}$
$b t=a^{2}$
$a=\sqrt{6 t}$
(iii) $r=5 a^{2}+3$
$r-3=5 a^{2}$
$\frac{r-3}{5}=a^{2} \quad a=\sqrt{\frac{r-3}{s}}$
$\sqrt{\frac{r-3}{s}}=a$
(iv) $h=\sqrt{\frac{a}{b}}$

$$
h^{2}=\frac{a}{b}
$$

$h^{2} b=a \quad a=h^{2} b$

Today we will be continuing to practise questions on changing the subject.

Make ' x ' the Subject

$$
\begin{aligned}
\sqrt{x+3} & =5 \\
\sqrt{x} & =2 \\
x & =4 \\
\sqrt{x-b} & \\
\sqrt{x} & =c+b \\
x & =(c+b)^{2} \\
2 \sqrt{x+5} & =p \\
2 \sqrt{x} & =p-5 \\
\sqrt{x} & =\frac{p-5}{2} \\
74 x & =4 r
\end{aligned}
$$

Change the subject of each formula to k.
(a) $y=\sqrt{k}$
(b) $x=\sqrt{k}$
(c) $m=\sqrt{k}$
(d) $a=\sqrt{\frac{k}{b}}$
(e) $c=\sqrt{\frac{k}{d}}$
(f) $\quad h=\sqrt{\frac{k}{g}}$
(g) $s=\sqrt{\frac{t}{k}}$
(h) $q=\sqrt{\frac{p}{k}}$
(i) $w=\sqrt{\frac{z}{k}}$
(j) $r=k^{2}$
(k) $a b=k^{2}$
(l) $\frac{p}{q}=k^{2}$
(m) $y=x+k^{2}$
(n) $\quad c=k^{2}-d$
(o) $x=3 k^{2}-1$

Change the subject of each formula to k.
(a) $y=\sqrt{k}$
(b) $x=\sqrt{k}$
(c) $\quad m=\sqrt{k}$
(d) $a=\sqrt{\frac{k}{b}}$
(e) $c=\sqrt{\frac{k}{d}}$
(f) $\quad h=\sqrt{\frac{k}{g}}$
(g) $s=\sqrt{\frac{t}{k}}$
(h) $q=\sqrt{\frac{p}{k}}$
(i) $w=\sqrt{\frac{z}{k}}$
(j) $r=k^{2}$
(k) $a b=k^{2}$
(l) $\frac{p}{q}=k^{2}$
(m) $y=x+k^{2}$
(n) $\quad c=k^{2}-d$
(o) $x=3 k^{2}-1$

Today we will be continuing to learn how to change the subject of a formula.

Today we will be continuing to practise questions on changing the subject.

Examples: Make ' t ' the subject of the formula

(i) $g=v t^{2}+4$
$g-4=v t^{2}$
$\frac{g-4}{V}=t^{2}$
$\sqrt{\frac{g-4}{v}}=t$
$t=\sqrt{\frac{g-4}{v}}$
(ii)

$$
\begin{gathered}
y=\sqrt{\frac{3 t-h}{p}} \\
y^{2}=\frac{3 t-h}{p} \\
p y^{2}=3 t-h \\
p y^{2}+h=3 t \\
\frac{p y^{2}+h}{3}=t
\end{gathered}
$$

(b) Express $\mathrm{P}=3(2 \mathrm{a}-4 \mathrm{~d})$ in terms of a .
(b) Express $\mathrm{H}=\mathrm{ax} \mathrm{x}^{2}+\mathrm{m}$ in terms of x .
(d) Express $\mathrm{M}=\frac{4 \mathrm{uw}}{\mathrm{v}}$ in terms of w .
(e) Express $\mathrm{P}=\frac{1}{2} \mathrm{ac}+\mathrm{d}$ in terms of a .
(f) Express $\mathrm{T}=\mathrm{u}+\frac{\mathrm{v}}{\mathrm{w}}$ in terms of v .
(g) Express $D=\frac{m}{n}-p$ in terms of n.
(h) Express $\mathrm{G}=\sqrt{\mathrm{u}+\mathrm{v}^{2}}$ in terms of v .

Daily Practice 22.6.2017
Q1. -9 + $8+13$

Q2. Rearrange the formula $y=m x+c$ such that x is the subject

Q3. Find the cost of a jumper that was $£ 30$ and marked 15% off in the sale

Q4. 91×2000
Q5. $1 \frac{1}{3}-\frac{2}{5}$

