Daily Practice 7.3 .16
$2 x^{2}+3 x-2 x-3$
$2 x^{2}+x-3$
Q2. Factorise $4 x^{2}-y^{2}$

$$
(2 x+y)(2 x-y)
$$

Q3. Simplify fully $\frac{2 x+3}{2 x^{2}+x-3}=\frac{2 x+3}{(2 x+3)(x-1)}=\frac{1}{x-1}$
$\operatorname{arc} A C$

Squaring out brackets

Before we learn to complete the square, we first need to practise squaring out brackets.

Multiply out and simplify the following:

$$
\begin{array}{cccc}
(x-1)^{2} & (x+3)^{2} & (2 x+4)^{2} & (5-x)^{2} \\
x^{2}-2 x+1 & x^{2}+6 x+9 & 4 x^{2}+16 x+16 & 25-10 x+x^{2}
\end{array}
$$

Today we will be learning to complete the square.
Homework due.
Please mark using online marking scheme.

$$
\begin{aligned}
& \frac{(2 x+5)^{2}}{4 x^{2}+20 x+25}=(2 x+5)(2 x+5) \\
& (x-7)^{2} \\
& x^{2}-14 x+49
\end{aligned}
$$

Completing the Square

Completing the square means writing a quadratic/trinomial expression in the form $(x+p)^{2}+q$

Writing it in this form is useful for when we are working with parabolas or solving quadratic equations.

Completing the Square

Daily Practice

 8.3 .16Q1. Multiply out and simplify $(2 x-1)^{2}$

$$
4 x^{2}-4 x+1
$$

Q2. Factorise $x^{2}-7 x+12$

$$
\begin{aligned}
& \text { se } x^{2}-7 x+12 \\
& (x-4)(x-3)
\end{aligned}
$$

Q3. Calculate the area of a quarter circle with radius 5 cm $A=\frac{1}{4} \pi r^{2}=\frac{1}{4} \times \pi \times 5^{2}=19.63 \mathrm{~cm}^{2}$

Q4. Calculate the capacity of a cylinder with diameter of base 20 cm and height 48 cm

$$
V=\pi r^{2} h
$$

$V=\pi \times 10^{2} \times 48$
$V=15079.64 \mathrm{~cm}^{3}$ (2d.p.)
Capacity $=15.08$ Litres (2d.p.)

Completing the Square
Examples: Write these expressions in the form $(x+p)^{2}+q$
$\left\{\begin{array}{l}1) x^{2}+6 x+10 \\ (x+3)^{2}+1 \\ (x+3)^{2}-9+10 \\ (x+3)^{2}+1\end{array}\right.$
2) $x^{2}-2 x+3$
$\underbrace{(x-1)^{2}}+2$
$x^{2}-2 x+1+2$
$x^{2}-2 x+3$
3) $x^{2}-14 x+10$
$(x-7)^{2}-39$
$\frac{x^{2}-14 x+49}{x^{2}-14 x+10}$

Today we will be continuing to learn how to complete the square.

Survey Password: Calculator

Completing the Square

Write the following quadratics in the form $(x+a)^{2}+b$
(a) $x^{2}+4 x+3$
(g) $x^{2}-12 x-15$
(b) $x^{2}+8 x-13$
(h) $x^{2}+22 x-4$
(c) $x^{2}+6 x+5$
(d) $x^{2}-4 x+5$
(i) $x^{2}+3 x-5$
(e) $x^{2}-8 x+9$
(j) $x^{2}-11 x+2$
(f) $x^{2}-2 x-5$
$\frac{\text { () } x^{2}-11 x+2}{(m) n^{2}-15 n+7.5}$

Completing the Square

Write the following quadratics in the form $(x+a)^{2}+b$
(a) $x^{2}+4 x+3=(x+2)^{2}-1$
(b) $x^{2}+8 x-13=(x+4)^{2}-29$
(c) $x^{2}+6 x+5=(x+3)^{2}-4$
(g) $\begin{aligned} x^{2}-12 x & -15 \\ (x-6)^{2} & -51\end{aligned}$
(h) $x^{2}+22 x-4$
(d) $x^{2}-4 x+5=(x-2)^{2}+1$
(e) $x^{2}-8 x+9=(x-4)^{2}-7$
(f) $x^{2}-2 x-5=(x-1)^{2}-6$
(1) $x^{2}+3 x-5$
$\left(x+\frac{3}{2}\right)^{2}-\frac{29}{4}$
(j) $x^{2}-11 x+2$
$\left(x-\frac{11}{2}\right)^{2}-\frac{121}{4}+2$

Completing the Square

Completing the square when the coefficient of x^{2} is -1

* First factorise by takling out -1 .
* Then complefe as normal.
* Ther muttiply back n the -1 .

Examples

(a) $-x^{2}+6 x-5$
(b) $-x^{2}-8 x+2$
$-1\left(x^{2}-6 x+5\right)$
$-1\left[(x-3)^{2}-4\right]$
$-(x-3)^{2}+4$ (c) $-x^{2}-18 x-9$

