Complex Numbers

Complex Numbers were first introduced in the 16th century by an Italian mathematician called Cardano. He referred to them as ficticious numbers.

Given an equation that does not give real roots such as

$$
x^{2}+3 x+25=0
$$

Complex Numbers
Complex Numbers became more acceptable to use in the 18th century.

They are known as complex because they are made up of real and imaginary parts. The complex number z is represented below in its Cartesian form.

Complex Numbers

Two complex numbers are equal if and only if the real and imaginary parts of the complex numbers are equal.

$$
a+b i=c+d i \Leftrightarrow a=c \text { and } b=d
$$

$$
\begin{aligned}
& \text { Example: Given that } x+2 y i=3+(x+1) i \text { where } x, y \in R \text {, find } x \text { and } y \\
& \qquad \begin{aligned}
& x+2 y i=3+x i+i \\
& \text { Equate like terms } \\
& x=3 \\
& 2 y i=(x+1) i \\
& 2 y i=4 i \\
& y=2
\end{aligned}
\end{aligned}
$$

Complex Numbers

$$
\sqrt{-1}=i
$$

By writing $\sqrt{ }-1$ as i, we can now solve equations that were previously seen as impossible

This also means that $\quad i^{2}=-1$
Can you think about expressions for i^{3} and i^{4} ?

$$
\begin{array}{cc}
i^{3}=\sqrt{-1} \times \sqrt{-1} \times \sqrt{-1} & i^{4}=\sqrt{-1} \times \sqrt{-1} \times \sqrt{-1} \times \sqrt{-1} \\
-1 \times \sqrt{-1}=-1 & =1
\end{array}
$$

What can you then say about $i^{2 n}$ and $i^{2 n+1}$ where n is an integer?

```
We can add, subtract, multiply and divide complex numbers. They
follow the same type of rules as algebra.
Examples: Given }\mp@subsup{z}{1}{}=4+3i\mathrm{ and }\mp@subsup{z}{2}{}=1-2i\mathrm{ , find the values of
1. z
        =5+i
2. 2- - -z = 4+3i-1+2i
        3+5i
3.2i\mp@subsup{z}{2}{}=(4+3i)(1-2i)
    4-8i+3i-6i'2
        4}\begin{array}{c}{4-5i+6}\\{10-5i}\end{array}\longrightarrow辛=-
4.zi}=(4+3.\mp@subsup{)}{}{2
    16+24i+ +i-9
        7+24i
```

Solving a quadratic equation to give complex roots
Example: Solve $z^{2}-4 z+13=0$

$$
\begin{align*}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(13)}}{2(1)} \\
& x=\frac{4 \pm \sqrt{-36}}{2}=\frac{4 \pm \sqrt{36} \sqrt{-1}}{2} \tag{-1}\\
& x=\frac{4 \pm 6 i}{2} \quad x=2 \pm 3 i \\
& \quad \text { Roots } \% 2+3 i, 2-3 i
\end{align*}
$$

Division of Complex Numbers
Remember rationalising the denominator for surds?

$$
\begin{aligned}
& \begin{array}{l}
(1-\sqrt{2})(1+\sqrt{2}) \\
1+\sqrt{2}-\sqrt{2}-\sqrt{4} \\
1-2=-1
\end{array}<\frac{3}{1-\sqrt{2}} \times 1+\sqrt{2}
\end{aligned}=\frac{3+3 \sqrt{2}}{-1}
$$

Note that the complex roots of a quadratic function are a complex number and its conjugate. E.g $5 \pm 3 i$

The product of a complex number and its conjugate gives a real number. This is helpful for division of complex numbers.

Complex Numbers \& Square Roots

Example: Find two solutions for which $\mathrm{z}=\sqrt{5-12 i}$

$$
\begin{aligned}
& \text { Let } z=a+i b \\
& \begin{aligned}
& a+i b=\sqrt{5-12 i} \\
&(a+i b)^{2}=5-12 i \\
& a^{2}+2 a i b+i^{2} b^{2}=5-12 i \\
& a^{2}-b^{2}+2 a i b=5-12 i \\
& \text { Equate lihe terms } \\
& a^{2}-b^{2}=5 \quad 2 a i b=-12 i \\
& a b=-6 \\
&\left(\frac{-6}{b}\right)^{2}-b^{2}=5 \quad a=\frac{-6}{b} \\
& \frac{36}{b^{2}}-b^{2}=5 \\
& 36-b^{4}=5 b^{2} \\
& b^{4}+5 b^{2}-36=0 \\
& \quad\left(b^{2}-4\right)\left(b^{2}+9\right)=0 \\
& b^{2}=4 \text { or } b^{2} \neq-9 \\
& b= \pm 2
\end{aligned} \\
& \text { finis real) }
\end{aligned}
$$

Division of Complex Numbers

z represents a complex number \& \bar{z} represents its conjugate.
Examples: Express the following in the form $x+i y$ where $x, y \in R$

1. $\frac{8+i}{3+2 i} \times(3-2 i)=\frac{(8+i)(3-2 i)}{23+2 i)(3-2 i)}=\frac{24-16 i+3 i-2 i^{2}}{9-6 i+6 i-4 i^{2}}$
$i^{2}=-1 \quad \frac{24-13 i+2}{9+4}=\frac{26-13 i}{13}=2-i$
2. $\frac{1-7 i}{4-3 i} \times 4+3 i=\frac{4+3 i-28 i-21 i^{2}}{16+12 i-12 i-9 i^{2}}$
$=\frac{25-25 i}{25}=1-i$

Argand Diagrams \& Polar Form

Argand diagrams are a way of geometrically representing complex numbers. We plot them on a Complex Plane where x represents the real axis and the y-axis represents imaginary numbers (except $(0, O)$).

The line representing z is similar to a vector because it has magnitude and direction.

Argand Diagrams \& Polar Form

- θ is the angle in radians between $O z$ and the positive direction of the x - axis and is known as the argument of z or Arg z.
($\left.1800^{\circ}\right)^{\circ}$ Principal Value of the argument is the value which lies between -
 Clockwise \Rightarrow Negative Angle

$z=a+i b$

Argand Diagrams \& Polar Form
Always start by plotting the complex number on an Argand Diagram.
Examples: Find the modulus and the argument of the following and
hence express in Polar Form

1. $z=2+2 i$
$r(\cos \theta+i \sin \theta)$
$r=\sqrt{a^{2}+b^{2}}$
$r=\sqrt{2^{2}+2^{2}}=\sqrt{8}=2 \sqrt{2}$

$$
\begin{aligned}
& \arg z=\theta \\
& \sin \theta=\frac{2}{2 \sqrt{2}}=\frac{1}{\sqrt{2}} \\
& \theta=\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4}
\end{aligned}
$$

$$
z=2 \sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)
$$

Argand Diagrams \& Polar Form
Examples: Find the modulus and the argument of the following and

$$
\begin{aligned}
& \text { hence express in Polar Form } \\
& \text { 3. } z=6-2 \sqrt{3 i} i \\
& r=\sqrt{6^{2}+(-2 \sqrt{3})^{2}} \\
& =\sqrt{48}=\frac{4 \sqrt{3}}{=} \\
& \begin{array}{r}
\arg z \Rightarrow \sin x=\frac{2 \sqrt{3}}{4 \sqrt{3}}=\frac{1}{2} \\
\\
x=\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}
\end{array}
\end{aligned}
$$

$$
z=4 \sqrt{3}\left(\cos \left(-\frac{\pi}{6}\right)+\sin \left(-\frac{\pi}{6}\right)\right.
$$

Polar form to Cartesian Form
Examples:

1. Express $\quad \sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$

$$
\begin{gathered}
\sqrt{2}\left(-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i\right) \\
-\frac{\sqrt{2}}{\sqrt{2}}+\frac{\sqrt{2}}{\sqrt{2}} i \\
-1+i
\end{gathered}
$$

in Cartesian form using exact values.

$$
\frac{3 \pi}{4}=135^{\circ}
$$

$$
\begin{aligned}
& 180^{\circ} \\
& \frac{18}{8} \times
\end{aligned}
$$

Argand Diagrams \& Polar Form
Examples: Find the modulus and the argument of the following and hence express in Polar Form
2. $z=-1+\sqrt{ } 3 i$

$$
r=\sqrt{(-1)^{2}+(\sqrt{3})^{2}}=2
$$

$$
\arg z \quad \tan x=\frac{\sqrt{3}}{1}=\sqrt{3}
$$

$$
x=\tan ^{-1}(\sqrt{3})=\frac{\pi}{3} \quad z=r(\cos \theta+i \sin \theta)
$$

$$
\theta=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}
$$

Argand Diagrams \& Polar Form
Examples: Find the modulus and the argument of the following and hence express in Polar Form
4. $z=-\sqrt{2}-\sqrt{2} i$
$r=\sqrt{(-\sqrt{2})^{2}+(-\sqrt{2})^{2}}=\sqrt{4}=\frac{2}{2}$
$\operatorname{cog} z \Rightarrow T a x=\frac{\sqrt{2}}{\sqrt{2}}=$

[^0]\[

$$
\begin{aligned}
& \text { Given two complex numbers, we can use Addition Formulae from } \\
& \text { Higher to get a simplified expression for the product and quotient. } \\
& z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) \text { and } z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
& z_{1} z_{2}=r_{1} r_{2}\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
& =r_{1} r_{2}\left[\cos \theta_{1} \cos \theta_{2}+\cos \theta_{1} i \sin \theta_{2}+\cos \theta_{2} i \sin \theta_{1}+i^{2} \sin \theta_{1}\right] \\
& r_{1} r_{2}\left[\left(\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}\right)+i\left(\cos \theta_{1} \sin \theta_{2}+\cos \theta_{2} \sin \theta_{1}\right)\right] \\
& r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right] \\
& \left.\begin{array}{l}
\text { * Multiply the modulii } \\
\text { * Addl the arguments. }
\end{array}\right\} \text { multiplying in Polar Form } \\
& \text { Dividing in Polor Form: } \\
& \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right] \\
& \text { * Divide the Modulii } \\
& \text { * Subtract the arguments. }
\end{aligned}
$$
\]

Polar Form: Multiplication and Division

Examples:
2. Given $z=8\left(\cos 50^{\circ}+i \sin 50^{\circ}\right)$ and $w=2\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)$
Find
(a) zw
(b) $\frac{z}{w}$
(c) $\frac{w^{3}}{z^{2}}$
and give your answers in the form $r(\cos \theta+i \sin \theta)$
(a) $z \omega=16\left(\cos 80^{\circ}+i \sin 80^{\circ}\right)$
(b) $\frac{z}{\omega}=4\left(\cos 20^{\circ}+i \sin 20^{\circ}\right)$
(r) $\omega^{3}=8\left(\cos 90^{\circ}+i \sin 90^{\circ}\right) \quad z^{2}=64\left(\cos 100^{\circ}+i \sin 100^{\circ}\right)$ $\frac{\omega^{3}}{z^{2}}=\frac{1}{8}\left(\cos \left(-10^{\circ}\right)+i \sin (-10)^{\circ}\right)$

De Moivre's Theorem

To raise a complex number to a power:

- change the complex number into polar form
\diamond use De Moivre's Theorem
- change back into cartesian form (if required)

Note: If you are leaving it in Polar Form and the range exceeds $\pm 180^{\circ}$, just $+/-360^{\circ}$ to it.

Polar Form: Multiplication and Division
Examples:

1. Calculate $z_{1} z_{2}$ when $\quad z_{1}=3\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$
and $\quad z_{2}=5\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$
$z_{1} z_{2}=15\left(\cos \left(\frac{\pi}{4}+\frac{3 \pi}{4}\right)+i \sin \left(\frac{\pi}{4}+\frac{3 \pi}{4}\right)\right)$
$=15(\cos \pi+i \sin \pi)$
incortesion form $=15(-1+0 i)=-15$

De Moivre's Theorem
Given $z=r(\cos \theta+i \sin \theta)$, we notice that

$$
z^{2}=r^{2}(\cos 2 \theta+i \sin 2 \theta)
$$

$$
z^{3}=r^{3}(\cos 3 \theta+i \sin 3 \theta)
$$

$$
z^{4}=r^{4}(\cos 4 \theta+i \sin 4 \theta)
$$

(b) Show that $z^{6}+64=0$

$$
\begin{aligned}
& \text { (a) } r=\sqrt{(\sqrt{3})^{2}+(1)^{2}}=\sqrt{4}=2 \quad \operatorname{Tan} x=\frac{1}{\sqrt{3}} x \\
& z=2\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right) \\
& z^{4}=2^{4}\left(\cos \left(\frac{5 \pi}{6} \times 4\right)+i \sin \left(\frac{5 \pi}{6} \times 4\right)\right) \\
& =16\left(\cos \frac{10 \pi}{3}+i \sin \frac{10 x}{3}\right) \\
& 16\left(-\frac{1}{2}+\left(\frac{-\sqrt{3}}{2}\right)_{i}\right) \\
& -8-8 \sqrt{3} i \\
& \text { (b) } z^{6}=2^{6}\left(\frac{-8-8 \sqrt{3 i}}{\left.\cos \left(\frac{5 \pi}{6} \times 6\right)+i \sin \left(\frac{5 \pi}{6} \times 6\right)\right)}\right. \\
& 64(\cos 5 \pi+i \sin 5 \pi) \\
& 64(-1) \\
& z^{6}+64=-64+64=0
\end{aligned}
$$

De Moivre's Theorem

Examples:
2. $z=1+\sqrt{3} i$ and $w=-2 \sqrt{3}+2 i$
(a) Write z and w in Polar Form

De Moivre's Theorem \& Trig. Identities

We can use De Moivre's Theorem \& Binomial Theorem to prove some trig. identities.

Reminder from Higher:
Note: Powers of i are cyclical

$\sin ^{2} A+\cos ^{2} A=1$

$$
\begin{aligned}
\mathrm{i}^{0} & =1 \\
\mathrm{i}^{1} & =\mathrm{i} \\
\mathrm{i}^{2} & =-1 \\
\mathrm{i}^{3} & =-\mathrm{i} \\
\mathrm{i}^{4} & =1 \\
\mathrm{i}^{5} & =\mathrm{i} \\
\mathrm{i}^{6} & =-1
\end{aligned}
$$

De Moivre's Theorem \& Trig. Identities

Using the previous example, try now to also express $\cos 5 \theta$ in terms of $\cos \theta$

De Moivre's Theorem \& Trig. Identities

We can use De Moivre's Theorem to express Complex Numbers with fractional and negative indices too.

$$
\begin{aligned}
& \text { Example: } \\
& z^{n}=\cos n \theta+i \sin n \theta \\
& \text { Given } z=\cos \theta+i \sin \theta \\
& \text { Write an expression for } \frac{1}{z^{n}} \text { and hence } z^{n}+\frac{1}{z^{n}} \\
& 1 \\
& \frac{1}{z^{n}}=z^{-n}=\cos -n \theta+i \sin -n \theta \\
& =\cos n \theta-i \sin n \theta \\
& z^{n}+\frac{1}{z^{n}}=\cos n \theta+i \sin n \theta+\cos n \theta-i \sin n \theta \\
& =2 \cos n \theta
\end{aligned}
$$

Solving Equations to give Complex Roots

We have already looked at how to solve quadratic equations that give complex roots.
We can also find the roots of equations with higher order polynomials.
The roots occur in conjugate pairs if the polynomial has real coefficients.
If you have been given 1 root, you will be able to find the others.

Solving Equations to give Complex Roots

If the roots of a quadratic equation are $z=-1$ and $z=3$, then the equation must be $y=(z+1)(z-3)$ therefore $y=z^{2}-2 z-3$
Quadratic equations can be formed in this way from the roots (even complex roots).
$z^{2}-z($ sum of roots $)+$ product of roots $=0$

$$
-z(\text { sum of roots })+\text { product of roots }=0
$$

```
Solving Equations to give Complex Roots
Example 1:
Show that -2+2i is a root of the equation }\mp@subsup{z}{}{3}+3\mp@subsup{z}{}{2}+4z-8=0\mathrm{ and find
the other roots
(-2+ii)}\mp@subsup{)}{}{3}+3(-2+2i\mp@subsup{)}{}{2}+4(-2+2i)-
(-2+2i)(4-8i+4i})+3(4-8i+4i2)-8+8i-
-8+16i-8i\mp@subsup{i}{}{2}+8i-14i+8i'+}+12-24i+12\mp@subsup{i}{}{2}-8+8i-
    8+16i+8+8i+16-8i+12-24i-12-8+8i-8
        =0i+0=0 # -2+2i is a root
        Conjugak root = -2-2i
```



```
            \mp@subsup{z}{}{2}+4z+8
```



```
        Rooks are z=-2+2i,z=-2-2i,z=1
```

Solving Equations to give Complex Roots
Example 2:
Verify that $\mathrm{z}=2$ is a roots of the equation $z^{3}-4 z^{2}+9 z-10=0$. Hence find all the roots of this equation.

$$
\begin{gathered}
\quad z^{2}-2 z+5 \\
a=\frac{-1 b}{}=\frac{-(-2) \pm \sqrt{(-2)-4(1)(5)}}{2(1)}=\frac{2 \pm \sqrt{4-20}}{2} \\
z=\frac{2 \pm \sqrt{-16}}{2}=\frac{2 \pm 4 i}{2}=1 \pm 2 i
\end{gathered}
$$

Roots: $z=2, z=1+2 i, z=1-2 i$

Finding nth roots of a complex number
Examples:

1. Solve $z^{2}=2-2 \sqrt{3 i}$ and sketch your solutions on an Argand Diagram

Finding nth roots of a complex number
We will now use De Moivre's Theorem to find roots in a different way.

An equation $z^{2}=a+i b$ will have 2 roots, $z^{3}=a+i b$ will have 3 roots etc. Therefore an equation with z^{n} will have n roots or solutions.

- We first write the number in Polar Form $r(\cos \theta+i \sin \theta)$
- We can then write our complex number in the form $r(\cos (\theta+2 n \pi)$ $+i \sin (\theta+2 n \pi)$) for $n=1, n=2$ etc. without changing its value.
- We use De Moivre's Theorem to solve.

Finding nth roots of a complex number

Examples

2. Find the 3 cube roots of the complex number $8 i$, expressing each
root in the form $a+i b$, where $a, b \in R$. Show all three roots on a single Argand Diagram
$r=8 \quad \theta=\frac{\pi}{2}$
$z^{3}=8\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$

$z=8^{\frac{1}{3}}\left(\cos \left(\frac{\pi}{2} \times \frac{1}{3}\right)+i \sin \left(\frac{\pi}{6} \times \frac{1}{3}\right)\right)=2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)=\sqrt{3}+i$
$z=8^{\frac{1}{3}}\left(\cos \left(\frac{\pi}{2}+2 \pi\right)+i \sin \left(\frac{\pi}{2}+2 \pi\right)\right)^{\frac{1}{3}}=2\left(\cos \left(\frac{5 \pi}{2} \times \frac{1}{3}\right)+i \sin \left(\frac{5 \pi}{2} \times \frac{1}{3}\right)\right)$
$=2\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{3}\right)=-\sqrt{3}+i$
$z=8^{\frac{1}{3}}\left(\cos \left(\frac{\pi}{2}+4 \pi\right)+i \sin \left(\frac{\pi}{2}+4 \pi\right)\right)^{\frac{1}{3}}=2\left(\cos \left(\frac{9 \pi}{2} \times \frac{1}{8}\right)+\right.$
$\left.i \sin \left(\frac{9 \pi}{2} x^{\frac{1}{3}}\right)\right)$
$=2\left(\cos \frac{9 \pi}{6}+i \sin \frac{5 \pi}{6}\right)=-2 i$

$$
\begin{aligned}
& \text { (d) } z^{4}=-8+8 \sqrt{3} i \\
& r=\sqrt{8^{2}+(8 \sqrt{5})^{2}}=16 \\
& \begin{aligned}
\operatorname{Tan} x & =\sqrt{3}-\sqrt{3}=\frac{\pi}{3} \\
x & =\operatorname{Tan}-1
\end{aligned} \\
& \theta=\pi-\frac{\pi}{3}=\frac{2 \pi}{3} \\
& z^{4}=16\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right) \\
& z^{4}=16^{\frac{1}{4}}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)=2\left(\frac{\sqrt{5}}{2}+\frac{1}{2} i\right)=\sqrt{3}+11 \\
& \begin{array}{l}
z_{1}=16 \\
z_{2}=16^{\frac{1}{4}}\left(\cos \frac{8 \pi}{12}+i \sin \frac{6 \pi}{k}\right)=2\left(-\frac{1}{2}+\frac{5 \pi}{2} i=-\frac{1+\sqrt{3}}{3}\right.
\end{array} \\
& \begin{array}{l}
z_{2}=16\left(\cos \frac{1}{2}+i \frac{1 \pi}{4}\left(\cos \frac{4 \pi}{12}+i \sin 2 \pi\right)=2\left(-\frac{5}{2}+\frac{-i}{2}\right)=-\sqrt{\sqrt{3}-i}\right. \\
z_{3}=12\left(\frac{10}{2}\right.
\end{array} \\
& \begin{array}{l}
z_{3}=16^{4}\left(\cos \frac{\pi}{12}+i \sin 2\left(\frac{2 \pi}{2}\right)=2\left(\frac{2}{2}-\frac{\sqrt{2}}{2} i\right)=\frac{1-\sqrt{3} i}{\underline{2}}\right. \\
z_{4}=2\left(\cos \frac{2 \pi}{12}+i \sin \frac{2 \pi}{1}\right)=2
\end{array}
\end{aligned}
$$

Geometrical Interpretation of Equations on a Complex Plane
The path formed by a point which moves according to some rule is known as its locus.
E.g. The path of the point P given that it always has to be 5 cm away from Q i.e. $|P Q|=5$. Below is a diagram of the locus of P.

This formula can be used to find the equation of the locus. Recall from higher that the circle with centre (a, b) and radius r is $(x-a)^{2}+(y-b)^{2}=r^{2}$

$$
\begin{aligned}
& \text { (f) } \\
& r=\sqrt{1^{2}+(16 \sqrt{3})^{2}}=32 \\
& \operatorname{Tan} \theta=\frac{16}{165} \Rightarrow \theta=\frac{\pi}{6} \\
& z^{5}=32\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right) \\
& z_{1}=2\left(\cos \frac{\gamma}{10}+i \sin \frac{\pi}{50}\right) \\
& z_{2}=2\left(\cos \frac{13 \pi}{50}+i \sin \frac{18 \pi}{5}\right) \\
& z_{3}=2\left(\cos \frac{5 \pi}{30}+i \sin \frac{5 \pi}{30}\right) \\
& z_{4}=2\left(\cos \frac{3 \pi}{30}+i \sin \frac{37 \pi}{3 \pi}\right) \\
& z_{5}=2\left(\cos \frac{44 \pi}{30}+\sin \frac{4 \pi}{3 \pi}\right)
\end{aligned}
$$

Locus in the Complex Plane

Suppose a complex number z moves in the complex plane subject to some constraint (for example Modulus $=3$ or $\arg (z)=30^{\circ}$)

The path of the complex number z is known as the locus of z. The equation of the locus can be found (because the locus can make the shape of a circle or line etc).

Locus in the Complex Plane
Examples:

1. Given $z=x+i y$, draw the locus of the point which moves on the complex plane such that:
(i) $|z|=9$
(ii) $|z| \leq 9$
(iii) $|z| \geq 9$

Locus in the Complex Plane
Examples:
2. The complex number z moves in the complex plane subject to the condition $|z+1-2 i|=4$. Find the equation of the locus and interpret the locus geometrically

$$
\begin{aligned}
& \text { Let } z=x+i y \\
& \qquad \begin{array}{r}
|x+i y+1-2 i|=4 \\
|x+1+i(y-2)|=4 \\
\sqrt{(x+1)^{2}+(y-2)^{2}}=4 \\
(x+1)^{2}+(y-2)^{2}=16
\end{array}
\end{aligned}
$$

Circle with centre $(-1,2)$
radius $=4$

5 Locus in the Complex Plane \qquad
Examples:
4. Find the equation of the locus and interpret geometrically

$$
|z+i|<2
$$

Locus in the Complex Plane

Examples:

3. The complex number z moves in the complex plane such that
$|z+2 i|=|z+3|$. Show that the locus of z is a straight line and find its equation.

$$
\begin{aligned}
& \text { Let } z=x+i y \\
& \begin{array}{l}
|x+i y+2 i|=|x+i y+3| \\
|x+i(y+2)|=|x+3+i y| \\
\sqrt{x^{2}+(y+2)^{2}}=\sqrt{(x+3)^{2}+y^{2}} \\
x^{2}+y^{2}+4 y+4=x^{2}+6 x+9+y^{2} \\
4 y+4=6 x+9 \\
\rightarrow 4 y=6 x+5 \\
\text { Straight line equation } \Rightarrow \text { locus is straight line. }
\end{array}
\end{aligned}
$$

Locus in the Complex Plane

Examples:
5. If $z=x+i y$, find the equation of the locus when $\arg (z)=\frac{3 \pi}{4}$

$$
\begin{aligned}
\tan \frac{y}{x} & =\frac{3 \pi}{4} \\
\tan \left(\frac{3 \pi}{4}\right) & =-1 \\
\frac{y}{x} & =-1 \quad y=-x
\end{aligned}
$$

[^0]: 2006
 3. Express the complex number $z=-i+\frac{1}{1-i}$ in the form $z=x+i y$ stating the values of x and y.

 3 marks Find the modulus and argument of z and $\operatorname{plot} z$ and \bar{z} on an Argand diagram.

