Q1. A function has the equation $f(x)=x^{2}-\frac{1}{2} x^{3}$. AB is a tangent to the function at the point P where $x=4$
(a) State the equation of $A B$
(b) Point P also lies on the circumference of a circle with centre $(1,-12)$. State the equation of the circle.

Q2. Find the stationary points on the curve $y=x^{3}+3 x^{2}-4$ and state their nature with justification.

Q3. Draw a sketch of the curve $y=x^{3}-4 x^{2}$ and show on it, the Stationary Points and where the curve cuts the x and y axes.

Q4. Draw a sketch of the derivative of the curve shown

Q5. State the maximum and minimum values of the function
$f(x)=x^{3}+3.5 x^{2}-10 x$ within the interval $-2 \leq x \leq 4$

Q6. A farmers wants to create an enclosure by fencing a large part of his field into the shape of a rectangle. He has 100 metres of fencing. Let the length of the field be x metres
(i) Express the breadth of the enclosure in terms of x.
(ii) Express the area of the field in terms of x.
(iii) Find the value of x that maximises the area of the enclosure.

