Solving Systems of Equations
As seen previously, we can solve systems of equations using matrices.
This time we will have more unknowns.

Given a system of equations, we can create an augmented matrix (like we did for 3×3 inverse) to help us find the unknowns. This is called
Gaussian Elimination.
For example: $\begin{gathered}4 x-3 y+z=5 \\ 2 x+y+2 z=7 \\ x+4 y+2 z=8\end{gathered} \quad\left(\begin{array}{ccc|c}4 & -3 & 1 & 5 \\ 2 & 1 & 2 & 7 \\ 1 & 4 & 2 & 8\end{array}\right)$

Solving Systems of Equations
We perform row operations in order to convert the matrix into to triangular form (getting all the entries below the main diagonal to be triangular form (getting all the entries below the main diagonal to be zero).

Examples:

1. Solve the following system of equations for x, y, z
$2 x-y+z=5$
$x-3 y+2 z=2$
$2 x+y+4 z=-3$
$2 r_{2}-r_{3}\left(\begin{array}{ccc|c}2 & -1 & 1 & 5 \\ 1 & -3 & 2 & 2 \\ 2 & 1 & 4 & -3\end{array}\right) \underset{r_{3}-r_{1}}{\rightarrow}\left(\begin{array}{ccc|c}2 & -1 & 1 & 5 \\ 0 & -7 & 0 & 7 \\ 2 & 1 & 4 & -3\end{array}\right)$
$\rightarrow\left(\begin{array}{ccc|c}2 & -1 & 1 & 5 \\ 0 & -7 & 0 & 7 \\ 0 & 2 & 3 & -8\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}2 & -1 & 1 & 5 \\ 0 & -2 & 0 & 2 \\ 0 & 2 & 3 & -8\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}2 & -1 & 1 & 5 \\ 0 & -2 & 0 & 2 \\ 0 & 0 & 3\end{array}\right) 6$
$2 x-y+z=5$
$\begin{aligned}-2 y+0 z & =2 \\ 3 z & =-6\end{aligned}$

Solving Systems of Equations

If a matrix is continually reduced such that the matrix reduces to the identity, the answers are immediate. This type of reduced matrix is called the matrix in reduced echelon form.

$$
\begin{gathered}
x+2 y=10 \\
2 x-3 y+z=3 \\
x-4 z=18
\end{gathered}
$$

Identifying types of solutions which exist
A system of equations with a solution can be represented as two lines intersecting at a point, hence a unique solution.

Some equations have no solutions and some have infinite solutions.

Parallel lines will give no solution
E.g. $2 x-y=3$

$$
r_{3}+3 r_{1}\left(\begin{array}{cc|c}
2 & -1 & 3 \\
-6 & 3 & -5
\end{array}\right) \rightarrow\left(\begin{array}{cc|c}
2 & -1 & 3 \\
0 & 0 & -5
\end{array}\right)
$$

This type of equation is known as inconsistent.

Infinite Solutions

$$
\begin{aligned}
& \text { Example: } \\
& x+y+z=1 \\
& 2 x+2 y+z=3 \\
& 2 x+2 y+2 z=2 \\
& \left.r_{2}-2 r_{1}\left(\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
2 & 2 & 1 & 3 \\
2 & 2 & 2 & 2
\end{array}\right) \rightarrow r_{3}-2 r_{1} 1 \begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
0 & 0 & -1 & 1 \\
2 & 2 & 2 & 2
\end{array}\right) \\
& \left(\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \begin{array}{rr}
-1 z=1 & x+y+z=1 \\
z=-1 & x+y-1=1 \\
& x+y=2
\end{array} \\
& \text { There are a infinite number of possibilities for } x \text { and } y \\
& \text { therefore there are infinite solutians. }
\end{aligned}
$$

The general rule is that if there is a zero on the leading diagonal after reduction to upper triangular form then there is no unique solution to the system of equations.

Ill Conditioning

A system of equations is ill conditioned when a small change in the right hand side of the equation causes a large change in the solution.

$$
\begin{aligned}
& \text { E.g. } \begin{array}{c}
x+0.99 y=1.99 \\
0.99 x+0.98 y=1.97
\end{array} \quad r_{2}-0.9{d_{1}}_{1}\left(\begin{array}{cc|c}
1 & 0.99 & 1.99 \\
0.99 & 0.98 & 1.97
\end{array}\right) \\
& \longrightarrow\left(\begin{array}{cc}
1 & 0.99 \\
0.0 .0001 & 1.99 \\
-0.0001
\end{array}\right)-0.0001 y=-0.0001 \\
& y=1 \\
& x=1
\end{aligned}
$$

Infinite Solutions \qquad

Ill Conditioning

Consider what happens with a small change to the original equations

$$
\begin{aligned}
& \text { so that } \quad x+0.99 y=2.00 \\
& 0.99 x+0.98 y=1.97 \\
& r_{2} .0 .99_{1}\left(\begin{array}{cc|c}
1 & 0.99 & 2 \\
0.99 & 0.98 & 1.97
\end{array}\right) \rightarrow\left(\begin{array}{cc|c}
1 & 0.99 & 2 \\
0 & -0.0001 & -0.01
\end{array}\right) \\
& -0.0001 y=-0.01 \quad x+99=2.00 \\
& y=100 \\
& x=-97
\end{aligned}
$$

Il Conditioning

Geometrically this occurs when the lines given by 2 equations meet at a very small angle. A small change to the right hand side of 1 of the equations replaces one line with a parallel line very close by but gives an intersection that is considerably further away.

