Higher Derivatives
The first derivative is represented by $f^{\prime}(x)$ or $d y / d x$. The second is represented by $f^{\prime \prime}(x)$ or $\frac{d^{2} y}{d x^{2}}$. The third is $f^{\prime \prime \prime}(x)$ or $f^{3}(x)$ or $\frac{d^{3} y}{d x^{3}}$ and so on.

How we use higher derivatives

1. Finding Stationary Points

$$
\frac{d^{2} y}{d x^{2}} \text { finds the nature of the S.P's. (Rate of change of the gradient). }
$$

Recall that $\frac{d^{2} y}{d x^{2}}>0 \Rightarrow \min . S . P$.
$\frac{d^{2} y}{d x^{2}}=0 \Rightarrow$ Use a nature table

$$
\frac{d^{2} y}{d x^{2}}<0 \Rightarrow \max . S . P .
$$

How we use higher derivatives
2. Displacement, velocity and acceleration

Recall, velocity is the rate of change of displacement with respect to time.

$$
v=\frac{d s}{d t} \quad \text { or } s^{\prime}(t)
$$

Acceleration is the rate of change of velocity with respect to time.

$$
a=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}} \text { or } \mathrm{s}^{\prime \prime}(t)
$$

If $\frac{d^{2} s}{d t^{2}}>0 \Rightarrow$ acceleration, if $\quad \frac{d^{2} s}{d t^{2}}<0 \Rightarrow$ deceleration.

## Displacement, velocity and acceleration

Examples:
2. The displacement $s$ metres, of point $P$ at time $t$ seconds is given by the formula $s=4 t^{3}-t^{2}+20 t-10$
(a) Find the velocity of $P$ after 5 seconds

$$
s^{\prime}(t)=12 t^{2}-2 t+20 \quad s^{\prime}(\mathrm{s})=12(\mathrm{~s})^{2}-2(5)+20=310 \mathrm{~m} / \mathrm{s}
$$

(b) Find the time at which the acceleration of $P$ is $22 \mathrm{~m} / \mathrm{s}^{-2}$

$$
\begin{aligned}
& s^{\prime \prime}(t)= 24 t-2 \\
& 24 t-2=22 \\
& 24 t=24 \\
& t / 1 \text { second }
\end{aligned}
$$

