Daily Practice

8.9.2015

Q1. State the centre and radius of the circle $x^{2}+y^{2}-4 x+2 y-20=0$
Centre $=(2,-1) \quad r=\sqrt{2^{2}+1^{2}+20}=\sqrt{25}=5$ Q2. The length of the radius of the circle $x^{2}+y^{2}-8 x+10 y+k=0$ is 7 . Find $\begin{aligned} \text { the value }=f \sqrt{g^{2}+f^{2}-c} \Rightarrow 7=\sqrt{4^{2}+5^{2}-k} \quad & 7=\sqrt{41-k} \\ & 49=41-k \quad k=-8\end{aligned}$
Q3. Does the recurrence relation $u_{n+1}=0.75 u_{n}+3$ have a limit? If so, find the value of the limit

$$
\begin{aligned}
& -1<0.75<1 \Rightarrow \text { a limit exists } \\
& L=\frac{b}{1-a} \Rightarrow \frac{3}{1-0.75}=12
\end{aligned}
$$

Functions

A function is either written y or $f(x)$

The derivative of a function is written $f^{\prime}(x)$ or $d y / d x$

Differential Calculus
Calculus is the mathematical study of change. Problems involving motion are solved using calculus.

Differentiation is the instantaneous rate of change of a function. $*$
Given an S, D, T graph,
the speed remains constant
for each section of the journey.
To calculate the speed, you can simply
find the gradient of the graph

Today we will be learning how to differentiate. Homework Due Tomorrow

Differential Calculus

But realistically, the speed of a car is continuously changing and therefore is more likely to have a curved graph

Differential Calculus
Calculating the gradient this way is called "from first principles"

$m_{p q}=$

8.9 .15

Differentiation means calculating the instantaneous rate of change of any function. The derivative represents the gradient of the tangent to the graph of the function.

| Notation: $f(x)=$ the function |
| :--- |$\quad f^{\prime}(x)=$ the derivative of the function

Differential Calculus

Examples: Differentiate the following

1) $f(x)=x^{4}$
2) $f(x)=3 x^{2}$
3) $f(x)=5 x^{-3}$

$$
\begin{gathered}
f^{\prime}(x)=4 x^{3} \quad f^{\prime}(x)=6 x \\
\text { E×6D, } \quad 6 F \\
\text { Q1-10 } \quad \text { Q1-10 }
\end{gathered}
$$

Differential Calculus

Example: Differentiate x^{2} from first principles

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& \text { Let } f(x)=x^{2} \\
& f(x+h)=(x+h)^{2} \\
& \Rightarrow \frac{(x+h)^{2}-x^{2}}{h}=\frac{x^{2}+2 x h+h^{2}-x^{2}}{h} \\
& =\frac{K(2 x+h)}{h}=2 x+h \quad \lim _{h \rightarrow 0} 2 x+h=2 x
\end{aligned}
$$

Daily Practice
9.9.2014

Q1. Find the equation of the perpendicular bisector of $(3,1)$ and $(1,5)$

$$
m=\frac{5-1}{1-3}=\frac{4}{-2}=-2 \quad \sum_{m=\frac{1}{2}} \quad m_{\text {dab }}=\left(\frac{3+1}{2}, \frac{1+5}{2}\right)=(2.3)
$$

Q2. If the line $2 x-3 y+5=0$ is perpendicular to $3 x+k y-8=0$, find the $\begin{array}{lll}\text { value of } k \\ M=\frac{2}{3} 1_{m}=\frac{-3}{2} & \begin{array}{ll}3 y=2 x+5 & k y=-3 x+8 \\ y=\frac{2}{3} x+\frac{5}{3} & y=-\frac{3}{4} x+8\end{array} \quad \frac{-3}{k}=\frac{-3}{2}\end{array}$ Q3. Find the equation of the circle with centre $(2,3) \&$ which to u $=2$ hes the y-axis $(x-a)^{2}+(y-b)^{2}=r^{2}$ $(x-2)^{2}+(y-3)^{2}=2^{2}$

Today we will be continuing to practise differentiation Homework Online due 15.9.15

Differential Calculus
9.9 .15

> If $f(x)=a x$ then $f^{\prime}(x)=a$
> If $f(x)=a$ then $f^{\prime}(x)=0$
' a^{\prime} is known as a constant (a number with a fixed value)

Examples: Differentiate with respect to x
(i) $f(x)=3 x$
$f^{\prime}(x)=3$
(ii) $f(x)=2$
(iii) $f(x)=4 x^{8}$
$f^{\prime}(x)=0$
$f^{\prime}(x)=32 x^{7}$

Remember!! Before differentiating, you must ensure that your function is in the form x^{n} so get rid of roots by using fractional indices.

$$
(\sqrt[y]{a})^{x}=a^{\frac{x}{y}} \quad \text { and } \quad \frac{1}{x^{m}}=x^{-m} \quad a x^{-m}=\frac{a}{x^{m}}
$$

$$
\begin{array}{lll}
\text { 1) } f(x)=\frac{1}{\sqrt{x}} & \text { 2) } f(x)=2 x^{\frac{3}{4}} & \text { 3) } f(x)=\frac{2}{\sqrt[3]{x^{2}}}=\frac{2}{x^{\frac{2}{3}}}
\end{array}
$$

$$
=\frac{1}{x^{\frac{1}{2}}}=x^{-\frac{1}{2}} \quad f^{\prime}(x)=\frac{6}{4} x^{-\frac{1}{4}} \quad f(x)=2 x^{-\frac{2}{3}}
$$

$$
f^{\prime}(x)=-\frac{1}{2} x^{-3 / 2}
$$

$=\frac{6}{4 x^{\frac{7}{4}}}$

$$
f^{\prime}(x)=-\frac{4}{3} x^{-\frac{5}{3}}
$$

$$
-\frac{1}{2} \frac{1}{x^{3 / 2}}
$$

$$
=\frac{6}{4 \sqrt[4]{x}}=\frac{-4}{3 x^{\frac{5}{3}}}
$$

$$
-\frac{1}{2 x^{3 / 2}}=-\frac{1}{(\sqrt{x})^{3}} \quad=\frac{-4}{3 \sqrt[3]{x^{3}}}
$$

Differentiating sums/differences

If $f(x)=g(x) \pm h(x) \quad f^{\prime}(x)=g^{\prime}(x) \pm h^{\prime}(x)$
Differentiate each term seperately using the usual rules

Examples: Differentiate the following with respect to x

$$
\begin{aligned}
& \text { i) } f(x)=x^{3}+3 x^{2}+2 x-7 \\
& \text { ii) } f(x)=1 / 2 x^{2}-\frac{3}{\sqrt[3]{x^{2}}} \\
& f^{\prime}(x)=3 x^{2}+6 x+2 \\
& f(x)=\frac{1}{2} x^{2}-\frac{3}{x^{\frac{2}{2}}} \\
& =\frac{1}{2} x^{2}-3 x^{-\frac{2}{3}} \\
& =1 x+2 x^{-5 / 3} \\
& =x+\frac{2}{x^{3 / 3}} \\
& =x+\frac{2}{(\sqrt[3]{x})^{5}}
\end{aligned}
$$

Daily Practice

10.9.15

Q1. State the size of the angle the line $y-2 x=4$ makes with the positive direction of the x - axis $m=\operatorname{Tan} \theta$
$2=\operatorname{Tan} \theta$
$\operatorname{Tan}^{-1}(2)$

$$
\begin{array}{ll}
y-2 x & =4 \\
y=2 x+4 \quad m=2 & \operatorname{Tan}^{-1}(2)=63 \cdot 4^{\circ}
\end{array}
$$

Q2. Find the equation of the line that is perpendicular to $y-2 x+1=0$ and passes through (3,1) $\xlongequal[=]{ } \quad \begin{aligned} y-1=-\frac{1}{2}(x-3) \\ x^{2}\end{aligned} \begin{array}{r}y=2 x-1 \\ m=2\end{array}$

$$
y=-\frac{1}{2} x+\frac{5}{2} \quad \begin{array}{rrr}
2 y-2=-1 x+3 & \perp m=-\frac{1}{2} \\
2 y+x-5=0 & \perp m=\alpha
\end{array}
$$ Q3. Write in completed square form $5 x^{2}+30 x-8=5(x+3)^{2}-53$

$$
5\left[x^{2}+6 x-\frac{8}{5}\right]=5\left[(x+3)^{2}-9-\frac{8}{5}\right]
$$

Q4. The number of houses in a particular area increases by 4% per year.
The number of homes demolished in the same area each year is 3 . Write a recurrence relation to show the number of homes in $n+1$ years

$$
u_{n+1}=1.04 u_{n}-3
$$

Today we will be learning to differentiate products and quotients.
Homework online due 15.9.15

Target Setting
Personal Support Journal Page 40

Differential with respect to x
(1) $f(x)=3 x^{2}+2 \quad f^{\prime}(x)=6 x$

$$
\begin{aligned}
\text { (5) } f(x) & =9 x^{2}+x^{-\frac{1}{2}} \\
f^{\prime}(x) & =18 x-\frac{1}{2} x^{3} \\
& =18 x-\frac{1}{2 \sqrt{x^{3}}}
\end{aligned}
$$

(2) $f(x)=4 x^{3}-5 x^{2}+12 x-3$ $f^{\prime}(x)=12 x^{2}-10 x+12$
(4) $f(x)=\frac{3}{\sqrt[3]{x}}+4 x^{5}=3 x^{-\frac{1}{3}}+4 x^{5}$

$$
f^{\prime}(x)=-x^{-\frac{4}{2}}+20 x^{4}
$$

$$
=-\frac{1}{\sqrt[3]{x}}{ }^{4}+20 x^{4}
$$

Rules of Indices: $a^{m} \times a^{n}=a^{m+n}$
$y=5 x^{2}+4$
$f(x)=\frac{1}{\sqrt[3]{x}^{2}}+5 x-2$
$f(x)=4 \sqrt{x}+7 x^{2}+9$

Daily Practice

Q1. Solve the equation $x^{2}-x-6=0$

$$
\begin{array}{rl}
(x+2 x x-3) & =0 \\
x+2=0 \quad x-3 & x-2 \\
x=3
\end{array}
$$

Q2. Find the value of t if the lines $2 x+t y+5=0$ and $(t+6) x+2 y-9=0$
 $y=-\frac{(t+b)}{2} x+9$ $\frac{2 t+12}{2 t}=-1$ $2 t+12=-2 t$
Q3. Find $f^{\prime}(x)$ when $f(x)=3 x^{-2}+\frac{1}{2 \sqrt{x}}$

$$
F(x)=3 x^{-2}+\frac{1}{2} x^{-\frac{1}{2}}
$$ $12=-4 t$

$\underline{\underline{t}-3}$

$$
\begin{aligned}
& \left(a^{m}\right)^{n}=a^{m n} \\
& a^{m} \div a^{n}=a^{m-n}
\end{aligned} \quad\left\{\begin{array}{l}
\text { Ex. 6F } \\
\text { Continue working } \\
\text { through } \mathrm{Q} \text { 's }
\end{array}\right.
$$

$$
a^{0}=1
$$

$a^{-1}=\frac{1}{a}$ and $a^{-m}=\frac{1}{a^{m}}$
$a^{\frac{1}{2}}=\sqrt{a}$ and $a^{\frac{1}{a}}=\sqrt[9]{a}$
$a^{\frac{p}{q}}=\left(a^{p}\right)^{\frac{1}{q}}=\sqrt[8]{a^{p}}$
$a^{\frac{p}{q}}=\left(a^{\frac{1}{4}}\right)^{p}=(\sqrt[6]{a})^{p}$

Today we will be learning to differentiate products and quotients.

Homework online due 15.9.15

Differentiating products (x) and quotients (\div)
11.9 .15

Express as a sum of individual terms first by:

- Multiplying out brackets where possible
- Expressing surds as fractional indices
- Split any fractions into individual fractions to get seperate terms

Daily Practice

 14.9.15Q1. State the gradient of the line $3 y-x+2=0$

$$
\begin{aligned}
3 y & =x-2 \\
y & =\frac{1}{3} x-\frac{2}{3} \quad m=\frac{1}{3}
\end{aligned}
$$

Q2. State the equation of the altitude from B in the triangle
$A(4,-7), B(3,1)$ and $C(5,-6) \quad \mid m=-1 \quad y-b=m(x-a)$
$A<M_{C C}=\frac{-6+7}{5-4}=1 \quad y-1=-1(x-3)$
Q3. The roots of $(x-1)(x+k)=-4$ are equal, find the values of k
$b^{2}-4 a c=0 \quad x^{2}+k x-x-k=-4 \quad c=-k+4$
$a=1 \quad b=k-1 \quad(1)^{2}+\begin{gathered}k(k-1) \\ x-2 \\ 2\end{gathered}-k+4=0$
Q4. The straight line $y=x$ cuts the circle $x^{2}+y^{2}-6 x-2 y-24=0$ at A
and B. Find the coordinates of A and B Sub. (1) into (2)

$$
\begin{array}{r}
x^{2}+x^{2}-6 x-2 x-24=0 \\
2 x^{2}-8 x-24=0 \\
x^{2}-4 x-12=0 \\
(x+2)(x-6) \\
B(6,6)^{A}(-2,-2) \quad x=-2 \\
x=6 \quad x=-2
\end{array}
$$

Differentiating products (x) and quotients (\div)
Examples: Differentiate

$$
\text { 1. } \begin{aligned}
y=(2 x+5)(x-4) & =2 x^{2}-8 x+5 x-20 \\
y & =2 x^{2}-3 x-20 \\
d y / d x & =4 x-3
\end{aligned}
$$

$$
\begin{array}{ll}
\text { 2. } f(x)=\frac{5-2 x}{x^{2}} & \text { 3. } \\
f(x)=x^{3}\left(3-\frac{2}{x^{4}}\right) \\
f(x)=x^{-2}\left(5-2 x^{\prime}\right) & f(x)=3 x^{3}-\frac{2 x^{3}}{x^{4}} \\
f(x)=5 x^{-2}-2 x^{-1} & f(x)=3 x^{3}-2 x^{-1} \\
f^{\prime}(x)=-10 x^{-3}+2 x^{-2} & f^{\prime}(x)=9 x^{2}+2 x^{-2} \\
f^{\prime}(x)=-\frac{10}{x^{3}}+\frac{2}{x^{2}} & f^{\prime}(x)=9 x^{2}+\frac{2}{x^{2}}
\end{array}
$$

Q3. The roots of $(x-1)(x+k)=-4$ are equal, find the values of k
$b^{2}-4 a c=0 \quad x^{2}+k x-x-k=-4 \quad c=-k+4$
$a=1 \quad b=k-1 \quad n^{x^{2}}+\underbrace{k^{x(k-1)} x-x-k+4}-k$ (2)

$$
b^{2}-4 a c=0
$$

$$
(k-1)^{2}-4(1)(-k+4)=0
$$

$$
k^{2}-k-k+1+4 k-16=0
$$

$$
k^{2}-2 k-15+4 k=0
$$

$$
k^{2}+2 k-15=0
$$

$$
(k+5)(k-3)=0
$$

$$
k=-5, k=3
$$

Differentiating products (x) and quotients (\div)

$$
(x+3)(x+2)
$$

Today we will be continuing to practise differentiation of quotients and products.
Homework Due Tomorrow!

$$
(\sqrt{x}+5)\left(x^{2}-1\right) \quad \sqrt[3]{x^{2}}
$$

Examples:
3. $f(x)=\frac{(1-\sqrt[3]{x})^{2}}{x^{\frac{1}{3}}}=f(x)=x^{-\frac{1}{3}}\left(1-x^{\frac{1}{3}}\right)^{2}$

$$
\begin{aligned}
& f(x)=x^{-\frac{1}{3}}\left(1-2 x^{\frac{1}{3}}+x^{\frac{2}{3}}\right)=x^{-\frac{1}{3}}-2 x^{0}+x^{\frac{1}{3}} \\
&=x^{-\frac{1}{3}}-2+x^{\frac{1}{3}} \\
& f^{\prime}(x)=-\frac{1}{3} x^{-\frac{4}{3}}+\frac{1}{3} x^{-\frac{2}{3}} \\
& * f^{\prime}(x)=-\frac{1}{3 \sqrt[3]{x^{4}}}+\frac{1}{3 \sqrt[3]{x^{2}}}
\end{aligned}
$$

$$
f(x)=\frac{(\sqrt{x}+\sqrt[4]{x})^{2}}{\sqrt{x^{3}}}
$$

Evaluating derivatives
The rate of change of a function can be evaulated at any point along the curve by substituting in a value for x
$f^{\prime}(p)$ means finding the value of the derivative at the point where $x=p$

$\mathcal{D a}_{\text {aily }}$ S $_{\text {acclice }} \quad$ 15.9.15
Q1. A triangle has vertices $A(1,1) B(3,5)$ and $C(11,1)$. Show that the triangle $A B C$ is right angled at B.
$m_{A B}=\frac{5-1}{3-1}=\frac{4}{2}=2 \quad m_{B C}=\frac{1-5}{11-3}=-\frac{1}{2}$

Since $m_{1} \times m_{2}=-1$
\Rightarrow Right angle $A \hat{B C}$

Q2. A recurrence relation is defined as $u_{n+1}=a u_{n}+4, u_{0}=2$.
Given that the limit to the above relation is 10 , find a.
$L=\frac{b}{1-a} \quad \begin{array}{ll}10=\frac{4}{1-a} & 10-10 a=4 \\ x 1-a & -10 a=-6\end{array}$
Q3. Differentiate the function $y=4 x^{3}+3 x^{2}+2 x+1 a=\frac{\frac{6}{10} \text { or } 0.6}{\text { or } \frac{3}{5}}$
$d y / d x=\frac{10}{}$

$$
/ d x=12 x^{2}+6 x+2
$$

Rates of change
$15 \cdot 9.15$
Remember that the derivative of a function represents the rate at which the y - coordinate changes with respect to the x - coordinate.

In a SDT graph, the rate of change is the speed.
In a graph with height and time, the rate of change is velocity

Evaluating derivatives

Examples:

1. If $f(x)=(3 x-5)^{2}$, find the value of $f^{\prime}(3)$
$f(x)=9 x^{2}-15 x-15 x+25=9 x^{2}-30 x+25$

$$
f^{\prime}(x)=18 x-30 \quad f^{\prime}(3)=18(3)-30=24
$$

2. If $f(x)=4 x^{2 / 3}+5 x-2$, find the value of $f^{\prime}(x)$ when $x=8$ $f^{\prime}(x)=\frac{8}{3} x^{-\frac{1}{3}}+5=\frac{8}{3 x^{\frac{1}{3}}}+5=\frac{8}{3 \sqrt[3]{x}}+5$
when $x=8 \quad \frac{8}{3 \sqrt[3]{8}}+5=\frac{4}{3}+5=\frac{19}{3}$

Daily Practice
16.9.15

Q1. Differentiate $\frac{2}{\sqrt[3]{x^{4}}}$ with respect to $x ~\left(2 x^{-\frac{4}{3}} \quad f^{\prime}(x)=\frac{-8}{3} x^{-\frac{7}{3}}=\frac{-8}{3 \sqrt[3]{x}}\right.$
Q2. State the equation of the line parallel to $6 x-2 y+3=0$ that contains the point $(1,4)$
$2 y=6 x+3$
$y=3 x+\frac{3}{2}$
$m=3$

Q3. Calculate the limit of the recurrence relation $u_{n+1}=0.4 u_{n}+36$

$$
L=\frac{b}{1-a}=\frac{36}{1-0.4}=\frac{36}{0.6}=60
$$

1. $f(x)=3 x^{3}-4 x$. Calculate the value of $f(1)$. 5
2. $f(x)=(2 x-1)^{2}$. Find $f(-2)-20$
3. $y=4 x^{2}-3 x+5$. Calculate the value of $\frac{d y}{d x}$ when $x=2$.
$d y / d x=8 x-3=8(2)-3=13$
4. $y=\frac{x^{2}-1}{x}$. Find the value of $\frac{d y}{d x}$ when $x=3$.
5. $f(x)=\sqrt{x}(4+2 \sqrt{x})$. Find $f(4)$
6. $f(x)=x^{3}(x-1)$. Find the value of $f(-1)$

$$
\begin{aligned}
& x^{-1}\left(x^{2}-1\right) \\
& x^{1}-x^{-1} \\
& d y / d x=1+x^{-2} \\
&=1+\frac{1}{x^{2}} \\
&=1+\frac{1}{3^{2}} \\
&=1 \frac{1}{9} \text { or } \frac{10}{9}
\end{aligned}
$$

7. $y=\frac{x-3 x^{2}}{x^{3}}$. Calculate the value of $\frac{d y}{d x}$ when $x=-2$
8. $f(x)=\left(x+\frac{1}{x}\right)^{2}$. Find $f(1 / 2)$.
9. $f(x)=\frac{x^{2}-2 x}{\sqrt{x}}$. Calculate $f(16)$.

Q1. The distance, d metres, travelled on a fairground ride is calculated using the formula $d(t)=8 t^{2}-4 t$, where t is the time in seconds after the start of the ride. Calculate the speed of the ride after 3 seconds.

$$
\begin{aligned}
& d^{\prime}(t)=16 t-4 \\
& d^{\prime}(3)=16(3)-4=44 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Ex. 6H Q5-14

Q2. The distance a rocket travels is calculated using the formula d $(t)=4 t^{3}$, where t is the time in seconds after lift-off. Calculate the speed of the rocket after 8 seconds.

$$
\begin{array}{r|}
d^{\prime}(t)=12 t^{2} \\
d^{\prime}(8)=12(8)^{2}=12 \times 64=768 / s
\end{array} \left\lvert\, \begin{aligned}
& c(t)=2 \pi t^{\frac{1}{2}} \\
& c^{\prime}(t)=\pi t^{-\frac{1}{2}} \\
& c^{\prime}(t)
\end{aligned}=\frac{\pi}{t^{1 / 2}} .\right.
$$

Example in context:
$16-9 \cdot 15$
A pebble is thrown vertically upwards from a point A. The height of the pebble, s metres, above A after t seconds is given by the formula:

$$
s(t)=8 t-2 t=
$$

(a) Calculate the velocity of the pebble at the point at which it is thrown.

$$
s^{\prime}(t)=8-4 t \quad t=0 \quad s^{\prime}(0)=8-4(0)=8 \mathrm{~m} / \mathrm{s}
$$

(b) Calculate the velocity of the pebble after 3 seconds.

$$
s^{\prime}(3)=8-4(3)=-4 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
& \text { Daily practice } \\
& \text { 01. } \mathrm{y}=\frac{\mathrm{x}-\mathrm{x}^{2}}{\mathrm{x}^{3}} \text {. Calculate the value of } \frac{\mathrm{dy}}{\mathrm{dx}} \text { when } \mathrm{x}=-2-\frac{\frac{17}{2} \cdot 9 \cdot 15}{x^{3}}+\frac{3}{x^{2}} \\
& \begin{aligned}
x^{-3}\left(x-3 x^{2}\right) & =x^{-2}-3 x^{-1} d y / d x=-2 x^{-3}+3 x^{-2} \frac{x}{(-2)^{3}}+\frac{3}{(-2)^{2}} \\
& \frac{-2}{-8}+\frac{3}{4}=\frac{1}{4}+\frac{3}{4}=1
\end{aligned}
\end{aligned}
$$

Q2. State the size of the obtuse angle that the line $y-3 x=4$ makes

$$
\begin{array}{lll}
\text { with the } x \text {-axis } & m=3
\end{array} \quad \begin{aligned}
& m=\operatorname{Tan} \theta \\
& 3=\operatorname{Tan} \theta
\end{aligned} \quad \begin{aligned}
& \theta=\operatorname{Tan}^{-1}(3) \\
& \quad \theta=71.56 \\
& 180^{\circ}-71.56^{\circ}=108.4^{\circ}
\end{aligned}
$$

Q3. Given the recurrence relation $u_{n+1}=k u_{n}+5$, find the value of k for which the limit is 4

$$
\begin{aligned}
& L=\frac{b}{1-a}= \\
& \begin{aligned}
& 4=\frac{5}{1-k} \\
& \times(1-k) \quad \times(1-k) \\
& 4-4 k=5 \\
&-4 k=1 \\
& k=-\frac{1}{4} \text { or }-0.25
\end{aligned}
\end{aligned}
$$

Today we will be learning about the gradient of the tangent and equation of tangent.

Homework due 22.9.15

Gradient \& Equation of the Tangent
Examples

1) Find the gradient of the tangent to each curve at the given value for x.
a) $f(x)=16-3 x^{2}$ at $x=-2$

$$
\begin{aligned}
& f^{\prime}(x)=-6 x \\
& f^{\prime}(-2)=-6(-2)=12=m
\end{aligned}
$$

Gradient \& Equation of the Tangent

17.9 .15

The gradient of the tangent to the curve is the same as the gradient of the curve at a specific point.

Gradient tangent $(m)=$ derivative of curve $f^{\prime}(x)$

b) $f(x)=\frac{5-2 x}{x^{2}}$ at $(-2,-5)$

$$
\begin{aligned}
& f(x)=x^{-2}(5-2 x)=5 x^{-2}-2 x^{-1} \\
& f^{\prime}(x)=-10 x^{-3}+2 x^{-2} \\
& f^{\prime}(x)=\frac{-10}{x^{3}}+\frac{2}{x^{2}} \\
& x=-2 \\
& f^{\prime}(-2)=\frac{-10}{(-2)^{3}}+\frac{2}{(-2)^{2}}=\frac{-10}{-8}+\frac{2}{4}=1 \frac{1}{4}+\frac{2}{4}=\frac{3}{4}=m
\end{aligned}
$$

1) Find the equation of the tangent to the curve $y=x=-2 x+2$ at the point $(-3,17)$.
```
Gradient \& Equation of the Tangent
    E) Find the equation of the tangent to the curve
    \(y=\sqrt{x^{3}}\) at \(x=4\)
    * First finding \(y\)
        \(y=\sqrt{4^{3}}=8\)
            \((4,8)=\) point of contact
    \(\begin{array}{ll}M=\frac{d y}{d x} \quad & y=x^{\frac{3}{2}} \\ & \frac{d y}{d x}=\frac{3}{2} x^{\frac{1}{2}}=\frac{3 \sqrt{x}}{2}\end{array}\)
    at \(x=4 \quad \frac{3 \sqrt{4}}{2}=\frac{6}{2}=3=\)
\(y-8=3(x-4)\)
\(y-8=3 x-12\)
\(3 x-y-4=0\)
```

Find the equation of the tangent to the curve $y=\frac{4 \sqrt{x}}{x}+2 x$ at the point where $x=4$ $y=\frac{4 x^{\frac{2}{2}}}{x}+2 x=4 x^{-\frac{1}{2}}+2 x$
A curve has equation $y=3 x^{2}-9 x+1$. A tangent to this curve has gradient 3 . Find the equation of this tangent.

A curve has equation $y=\frac{x^{4}}{4}-32 x$. A tangent to this curve is parallel to the x-axis. Find the equation of this tangent.

Daily Practice 18.9.15

$$
\text { Q1. Differentiate } \frac{3 x+1}{x^{2} \sqrt{x}}=\frac{3 x+1}{x^{\frac{5}{4}}}=\frac{3 x}{x^{\frac{3}{2}}}+\frac{1}{x^{\frac{3}{2}}}=3 x^{-\frac{3}{2}}+x^{-\frac{5}{2}}
$$

$$
f^{\prime}(x)=-\frac{9}{2} x^{-\frac{5}{2}}-\frac{5}{2} x^{-\frac{7}{2}}=-\frac{9}{2 \sqrt{x^{5}}}-\frac{5}{2 \sqrt{x}}
$$

Q2. (a) State the centre and the radius of the circle $x^{2}+y^{2}+\frac{28 x}{18 x}+20 y+81=0$
(b) State the point(s) of intersection of the line $y=x+1$ and the above
circle
(a) Centre $=(-9,-10)$ Radius $=\sqrt{9^{2}+10^{2}-81}=\sqrt{100}=10$
(b) Sub. (1) into (2)
$x^{2}+(x+1)^{2}+18 x+20(x+1)+81=0$
$x^{2}+x^{2}+2 x+1+18 x+20 x+20+81=0$
$2 x^{2}+40 x+102=0$
$x^{2}+20 x+51=0$
$(x+3)(x+17)=0$
$x=-3, x=-17$
$\begin{array}{rl}y=-3+1 & y=-77+1 \\ y=-2 & y=-16\end{array}$
$(-3-2) \quad(-19,-16)$

Daily Practice
Q1. Factorise $x^{2}-17 x+72$
$(x-9)(x-8)$

Q2. $f(x)=3 x^{2}+2 x-1$, find $f^{\prime}(3)$

$$
f(x)=6 x+2 \quad f^{\prime}(3)=6(3)+2=20
$$

Q3. Simplify $3 x^{2}\left(x^{1 / 2}+2 x^{-1}\right)$

$$
3 x^{\frac{5}{2}}+6 x=3 \sqrt{x^{5}}+6 x
$$

Q5. Show that the points $P(4,1), Q(5,2)$ and $R(7,4)$ are collinear.

$$
\begin{aligned}
M_{P Q}= & \frac{2-1}{5-4}=\frac{1}{T}=1 \quad M_{Q R}=\frac{4-2}{7-5}=\frac{2}{2}=1 \\
& M_{P Q}=M_{Q R} \\
& \text { Share commen pant } Q \Rightarrow \text { Colliner }
\end{aligned}
$$

Today we will be looking at increasing and decreasing functions.

Homework due today

Increasing and Decreasing Functions

$22 \cdot 9 \cdot 15$
If the derivative of a curve is positive, this means that the function is increasing. $\frac{d y}{d x}>0$

If the derivative of the curve is negative, it means that the function is decreasing. $\frac{d y}{d x}<0$

To show that a curve is always increasing, you must show that $\mathrm{dy} / \mathrm{dx}$ is always $\geqq 0$

To show that a curve is always decreasing, you must show that $\mathrm{dy} / \mathrm{dx}$ is always $\leqq 0$

Increasing and Decreasing Functions

Examples

1) For the function $f(x)=3 x^{2}+2 x-5$ state whether the function is increasing or decreasing at:
a) $x=-3$
$f^{\prime}(x)=6 x+2$
at $x=-3$
b) $x=4$
$6(-3)+2=-16<0$
\Rightarrow decreasing

Pg. 106 QI.

Increasing and Decreasing Functions

Examples

3) For $y=2 x^{3}-x^{2}-5 x-9$ state whether the function is increasing or decreasing at $x=-2$.

Increasing and Decreasing Functions

Examples:
2. Show that the function $y=x^{3}+2 x$ is never decreasing

$$
\begin{aligned}
& d y / d x= 3 x^{2}+2 \\
& 3 x^{2} \geq 0 \quad 2 \geq 0 \\
& \text { always always } \\
& 3 x^{2}+2 \geq 0 \Rightarrow \text { Alwags hereasing }
\end{aligned}
$$

(2) A patient is injected with 156 ml of a druy. Every 8 hours, 22% of the drug passes out of his bloodstream. To compensate, a further 25 ml dose
is given every 8 hours.
(a) Find a recurrence relation for the amount of drug in his bloodstream. (b) Calculate the amount of drug remaining after 24 hours.
(a) $u_{n+1}=0.78 u_{n}+25 \quad u_{0}=156$
(b) $a_{1}=0.78(156)+25=146.68$
$h=0.78(146-68)+25=139.4$
$U_{3}=0.78(139.4)+25=133.7 \mathrm{~mL}$

Today we will be learning about stationary points and their nature.

Homework Online due 29.9.15

Stationary points

The stationary points (turning points) on a curve are where the
gradient of the curve is equal to zero. $m=\frac{d y}{d x}=0$

Stationary points

A point of inflection is the point on the curve where the curvature changes (but continues to increase or decrease).

Decreasing point of inflection

Differentiation HW:

Q8. If $f(x)=\frac{x-3}{x^{2} \sqrt{x}}$ find the gradient of the tangent of $f(x)$ at the point where $x=1$

$$
\begin{aligned}
f(x) & =\frac{x-3}{x^{2} x^{\frac{1}{2}}}=\frac{x-3}{x^{\frac{5}{2}}}=x^{-\frac{5}{2}}\left(x^{\prime}-3\right)=x^{-\frac{3}{2}}-3 x^{-\frac{5}{2}} \\
f^{\prime}(x) & =-\frac{3}{2} x^{-\frac{5}{2}}+\frac{15}{2} x^{-\frac{7}{2}} \\
& =\frac{-3}{2 \sqrt{x^{5}}}+\frac{15}{2 \sqrt{x}^{7}} \\
f^{\prime}(1) & =\frac{-3}{2 \sqrt{1}^{5}}+\frac{15}{2 \sqrt{1^{7}}}=\frac{-3}{2}+\frac{15}{2}=\frac{12}{2}=6
\end{aligned}
$$

Stationary points \& their nature

To find the nature of a stationary point:

- First differentiate the function and equate to zero to find the T.P's
- Then consider $f^{\prime}(x)$ near each stationary point by using values of x that are slightly bigger or slightly smaller.
- If $f^{\prime}(x)>0$, then the graph is increasing
- If $f^{\prime}(x)<0$, then the graph is decreasing
- Create a nature table to show your results
- If it is a point of inflection, the graph will be increasing or decreasing for both smaller and bigger values.

Daily Practice
24.9.15

Q1. Find the equation of the line perpendicular to $4 x-1+2 y=0$ that passes through the point $(3,4)$
$y=-2 x+\frac{1}{2}$
$m=-2$
$I_{m}=\frac{1}{2}$
$y-b=m(x-a)$
$y-4=\frac{1}{2}(x-3)$
$2 y-8=x-3$
$x-2 y+5=0$
Q2. State the centre and the radius of the circle
$x^{2}+y^{2}-12 x+8 y-12=0 \quad$ Centre $=(6,-4)$
$\begin{array}{cc}2 g=-12 & 2 f=8 \\ g=-6 & f=4\end{array} \quad$ Radius $=\sqrt{g^{2}+f^{2}-c}=\sqrt{64}=8$
Q3. Find the equation of the tangent to $y=x^{2}+3 x+2$ parallel to the
line $y=2 x+1$
$m=2$
$\begin{array}{lr}2 x+3 & =2 \\ 2 x & \left.=-\frac{1}{2}\right)^{2}+3\left(\frac{1}{2}\right)+2\end{array} \begin{aligned} 2 x & \end{aligned}$
$y=\frac{1}{4}-\frac{3}{2}+2$
$y=\frac{1}{4}-\frac{6}{4}+\frac{8}{4} \quad\left(-\frac{1}{2}, \frac{3}{4}\right)$
$y=\frac{3}{4}$
$y-\frac{3}{4}=2\left(x+\frac{1}{2}\right)$

Stationary points \& their nature

To find the nature of a stationary point:

- First differentiate the function and equate to zero to find the T.P's
- Then consider $f^{\prime}(x)$ near each stationary point by using values of x that are slightly bigger or slightly smaller.
- If $f^{\prime}(x)>0$, then the graph is increasing
- If $f^{\prime}(x)<0$, then the graph is decreasing
- Create a nature table to show your results
- If it is a point of inflection, the graph will be increasing or decreasing for both smaller and bigger values.

Daily Practice \qquad 25.9.15

Q1. An organic gardener discovers that 250 aphids are born each week in the greenhouse during the summer. She introduces a parasite that kills 50% of the aphids each week. If there were 700 aphids at the beginning of the summer:
(a) Write down a recurrence relation that describes this situation

$$
U_{n+1}=0.5 u_{n}+250
$$

(b) The gardener says that in the long run if the number of aphids exceeds

200, then some of the plants will die. Is there a chance that this will happen?

$$
L=\frac{b}{1-a}=\frac{250}{1-0.5}=\frac{250}{0.5}=500
$$

$$
\text { Yes, the plats will die as } 500>200
$$

Today we will be continuing to learn about stationary points and their nature.

Homework Online due 29.9.15

Stationary points \& their nature

Example:
Find the Stationary Points on the following curves and determine their nature.

$$
\begin{aligned}
& \text { 1) } y=4 x^{2}-16 x+7 \\
& \text { At a S.P. } \quad d y / d x=m=0 \\
& d y / d x=8 x-16=0 \\
& 8 x=16 \\
& x=2 \\
& y=4(2)^{2}-16(2)+7 \\
& y=16-32+7 \\
& y=-9 \\
& (2,-9) \text { minimum S.P. } \\
& \text { SeP. }=(2,-9) \\
& \text { Nature Table } \uparrow
\end{aligned}
$$

Today we will be continuing to learn about stationary points and increasing/decreasing functions.

Stationary points \& their nature

$$
\begin{aligned}
& \text { 2) } y=x(x-3) z=x\left(x^{2}-6 x+9\right)=x^{3}-6 x^{2}+9 x \\
& d y / d x=m=3 x^{2}-12 x+9=0 \\
& x^{2}-4 x+3=0
\end{aligned}
$$

Increasing and Decreasing Functions
Examples
4) For $y=3 x^{2}-4 x$, find the intervals in which the function is increasing and decreasing
Increasing and Decreasing Functions

Examples
2) For $y=2 / 3 x^{3}-2 x$, find the intervals in which the function is
8) For $y=2 / 5 x^{3}-2 x$, find
increasing and decreasing
$d y / d x=2 x^{2}-2=0$ at S.P!'s

$x^{4}-4 x^{3}=0$
$x^{3}(x-4)=0$ $x^{3}=0 \quad x=4$ $x=0 \quad x=4$

Stationary points \& their nature

$$
\text { 3) } y=8 x^{3}-3 x^{4}
$$

Today we will be continuing to practise questions on increasing \& decreasing functions and Stationary Points.
Homework Due Tomorrow

Daily Practice 29.9.2015

Q1. Find the limit of the recurrence relation $u_{n+1}=0.5 u_{n}+12$

$$
\begin{array}{ll}
L=\frac{b}{1-a}=\frac{12}{0.5}=24 & -1<0.5<1 \\
& \Rightarrow \text { limit exists }
\end{array}
$$

Q2. The point $\binom{x}{(-5,3)}$ lies on the circumference of the circle
$x^{2}+y^{2}+a x-6 y+4=0$. Find the value of a
$(-5)^{2}+3^{2}+a(-5)-6(3)+4=0$
$25+9-5 a-18+4=0$ $20=5 a$
Q3. Find $A^{\prime}(r)$ when $\overline{\overline{A(r)}}=3 \pi r^{2}+\frac{800}{r}$

$$
A(r)=3 \pi r^{2}+800 r^{-1}
$$

$$
A^{\prime}(r)=6 \pi r-800 r^{-2}
$$

$A^{\prime}(r)=6 \pi r-\frac{800}{r^{2}}$

Closed Intervals - Maximum and Minimum

29.9 .15

A closed interval or restricted domain means looking at just part of a graph instead of the whole thing.

For example, if given the interval
$-1 \leq x \leq 2$, then you are only looking at
the graph between the points where $x=-1$ and $x=2$.
Draw a vertical line at each point.

Closed Intervals Max. \& Min. Values

The maximum or minimum values are the max. and min. y coordinates that occur on the graph. They are either at the

If the closed interval is extended to $-5 \leq x \leq 5$ the min value would change to -2 (S.P)

Closed Intervals Max. \& Min. Values

Example:

Find the maximum \& minimum values of the function $f(x)=2 x^{3}-3 x^{2}-12 x+5$ within the closed interval $-2 \leq x \leq 1$.

$f(1)=2(1)^{3}-3(1)^{2}-12(1)+5=-8$ minimum value $f(-2)=2(-2)^{2}-3(-2)^{2}-12(-2)+5=1$

$$
\Rightarrow 12=\text { maximum value }
$$

Daily Practice
30.9.2015

Q1. Find the equation of the tangent to the curve $y=3 x^{2}-3$ at the point

Before Differentiation, what did we need to sketch the graph of a function?

$$
\begin{aligned}
& \text { Turning Points })+ \text { Nature } \\
& y \text {-intereppt }(x=0) \\
& \text { Roots }(y=0)
\end{aligned}
$$

Today we will be learning how to sketch curves using differentiation.

Homework Online due 6.10.15

Curve Sketching
To sketch the graph of a function, you will need to find out:

- The x and y - intercepts
- The Stationary Points and their nature. (Differentiation)
- The behaviour of the curve for large positive and negative x (as $x \rightarrow$ ∞ and as x-> $+\infty$)

The above information (1\&2) needs to be clearly annotated on the graph.

	Daily Practice 1.10.2015
Q1. State the turning point and its nature of the function $y=4(x+5)^{2}-2$ $T . P=(-5,-2) \text { minimum }$ Q2. (a) Differentiate with respect to x, the function	
	$A(x)=x^{2}+\frac{432000}{x}=x^{2}+432060 x^{-1}$
(b) Work out the stationary point(s) of the above function and state the nature$\begin{gathered} A^{\prime}(x)=2 x-432000 x^{-2}=0 \\ 2 x-\frac{432200}{x^{2}}=0 \end{gathered}$	
	$\begin{array}{rlr} A(60)= & (60)^{2}+\frac{432000}{60} & 2 x^{3}-432000=0 \\ = & 2 x^{3}=432000 \\ =(600,10800) & x^{3}=216000 \\ & x=\sqrt[3]{216000} \end{array}$
	$x / 60^{-} / 60 / 60^{+} \quad x=60$
	dyddx $-0+$ minimum
	slope $\$ - $/$

Closed Intervals Max. \& Min. Values

Example:

Find the maximum \& minimum values of the function $f(x)=2 x^{3}-3 x^{2}-12 x+5$ within the closed interval $-2 \leq x \leq 1$.

$\underline{2}=$ maximum value
$f(1)=2(1)^{3}-3(1)^{2}-12(1)+5=-8$ minimum value

$$
\begin{gathered}
\text { 2(f) } f(x)=3 x-x^{3} \\
f(-2)=3(-2)-(-2)^{3}=-6+8=2 \\
f(1)=3(1)-(1)^{3}=2 \\
f^{\prime}(x)=3-3 x^{2}=0 \\
3=3 x^{2} \\
x^{2}=1 \\
x= \pm 1 \\
f(1)=2 \quad f(-1)=3(-1)-(-1)^{3} \\
=-3+1=-2 \\
S P_{s}^{\prime}=(1,2)(-1,-2) \\
\operatorname{Max}=2 \text { min }=-2
\end{gathered}
$$

Today we will be learning to sketch the curve of the derived function.

Homework Online due 6.10.15
Closed Intervals Max. \& Min. Values

$=$| Question: |
| :--- |
| Then find S.P.'s |
| Quendpoints first |

Find the maximum and minimum values of $y=8 x^{3}-3 x^{2}$ in the interval $-2 \leq x \leq 1$

End-points:

$f(-2)=8(-2)^{3}-3(-2)^{2}=-76$
$f(1)=8(1)^{3}-3(1)^{2}=5$
SP's $y=8 x^{3}-3 x^{2}$
$d y d x=24 x^{2}-6 x$
$d y / d x=24 x^{2}-6 x=0 \quad f(0)=8(0)^{3}-3(0)^{2}=0$ $6 x(4 x-1)=0 \quad f\left(\frac{1}{4}\right)=8\left(\frac{1}{4}\right)^{3}-3\left(\frac{1}{4}\right)^{2}=-\frac{1}{16}$
$6 x=0 \quad 4 x-1=0$
$\begin{array}{ll}(0,0) & \frac{x=0}{4}=\frac{1}{4} \\ \left(\frac{1}{4}-\frac{1}{16}\right)\end{array}$
Maximum $=S$ minimum
value $=-76$
Ex. 60 Ql(b) Q2. (f)

Daily Practice
2.10.2015

Q1. A circle C_{1} has equation $x^{2}+y^{2}+2 x+4 y-27=0$.
(a) Write down the centre and calculate the radius of C_{1}.
(b) The point $\mathrm{P}(3,2)$ lies on the circle C_{1}. Find the equation of the tangent at P.
(a) $(-1,-2)$

Radius $=\sqrt{1^{2}+2^{2}+27}=\sqrt{32}=4 \sqrt{2}$
(b)

Sketching the graph of the derived function

The graph of $f^{\prime}(x)$ shows the value of the gradient at each point on
$y=f(x)$.

- Only focus on the S.P's and the shape of the graph.
- All S.P.'s on the graph become roots on the graph of the derivative (because $\mathrm{dy} / \mathrm{dx}=\mathrm{m}=0$ here)
- Wherever the curve is strictly decreasing, the derivative is negative so the graph of the derivative will lie below the x - axis.
- Whenever the graph is stricly increasing, the derivative is positive so the graph of the derivative will lie above the x - axis.

$\rightarrow T \cdot P \rightarrow-m$
at T.P $\Rightarrow m=0$
after T.P $\Rightarrow+m$

Sketching the graph of the derived function
2)

 wipeboards

Sketching the graph of the derived function
Examples
Each graph shows the graph of a function, $y=f(x)$. Sketch
the graph of $y=f^{\prime}(x)$, the derived function.
1)

3) Sketching the graph of the derived function

Sketching the graph of the derived function

Daily Practice

 5.10.2015A curve has equation $\mathrm{y}=\mathrm{x}^{3}-3 \mathrm{x}^{2}$
(a) Find where this curve cuts the x and y axes.
(b) Find the stationary points of the curve and determine their nature.
(c) Sketch the curve.

Optimisation is a process that uses differentiation to find the minimum and maximum of a function to solve problems in context.
Example: The diagram shows a rectangular cake-box with no top. It has been made from thin card. The volume of the box is $500 \mathrm{~cm}^{3}$. The base of the box is a square with sides of length $x \mathrm{~cm}$.
(a) Show that the area $\mathrm{A} \mathrm{cm}^{2}$ of card used used to make this box is given by $A=x^{2}+\frac{2000}{x}$
$A=x^{2}+4 x h$
$A=x^{2}+4 x\left(\frac{500}{x^{2}}\right)$ $A=x^{2}+\frac{2000}{x}$ (b) Find the minimum area of card used. $A(x)=x^{2}+2000 x^{-1}$

$$
A^{\prime}(x)=2 x-2000 x^{-2}=0 \quad \text { Area }=x^{2}+\frac{2000}{x}
$$

$2 x-\frac{2000}{x^{2}}=0$

Daily Practice

6.10 .2015

Q1. State the equation of the tangent to the function $y=3 x^{2}+7 x$ at the point where $x=-1 \quad y=3(-1)^{2}+7(-1)$ $\begin{array}{rlrl}m=d y / d x & =6 x+7 & & y=-4 \\ & =6(-1)+7=1 & y+4=1(x+1)\end{array}$

Q2. Given the function $f(x)=\sqrt{x}\left(x+\frac{3}{x^{2}}\right)$ find $f^{\prime}(x)$

$$
\begin{aligned}
& f(x)=x^{\frac{1}{2}}\left(x+3 x^{-2}\right) \\
& f(x)=x^{\frac{3}{2}}+3 x^{-\frac{3}{2}} \\
& f^{\prime}(x)=\frac{3}{2} x^{\frac{1}{2}}-\frac{9}{2} x^{-\frac{5}{2}} \\
& f^{\prime}(x)=\frac{3}{2} \sqrt{x}-\frac{9}{2 \sqrt{x}^{5}}
\end{aligned}
$$

$$
3 \times \frac{-3}{2}
$$

Today we will be continuing to practise questions on optimisation.

Homework due today.

Going through the homework.

Q5. A curve has equation $y=x^{3}-6 x$. There are two tangents to the curve that have a gradient of 6 . Find the equations of each of these tangents.

Q6. The diagram shows the graph of $y=f^{\prime}(x)$. The $x-a x i s$ is a tangent to this graph. Explain why the function $f(x)$ Is never decreasing

$m \geq 0$ because $f^{\prime}(x)$ always ≥ 0
\Rightarrow Graph is always increasing

a) Show that the surface area of this prism is given by

$$
\begin{equation*}
A(x)=x^{2}+\frac{432000}{x} \tag{3}
\end{equation*}
$$

b) Find the value of x which minimises this surface area. (

