Implicit Differentiation

In functions of the form $y=f(x)$, y is expressed in terms of x. We say that the variable y is given explicitly in terms of x.

$$
\text { E.g. } y=3 x^{2}-4 x+9
$$

In a function where y and x are intermixed and not of the form $y=f$ (x), we say that these functions are implicit. They imply that a function exists.

$$
\text { E.g. } x^{2}+2 x y-2 y=4
$$

An implicit function can be expressed explicitly but when it is too difficult to do this, we differentiate using implicit differentiation.

Implicit Differentiation

Examples: Find $d y / d x$ for each of these functions

1. $x^{4}=x^{2}-y^{2}$

$$
\begin{aligned}
& 4 x^{3}=2 x-2 y \cdot d y / d x \\
& 2 y \cdot d y / d x=2 x-4 x^{3} \\
& d y / d x=\frac{2 x-4 x^{3}}{2 y}=\frac{x\left(1-2 x^{2}\right)}{y}
\end{aligned}
$$

Implicit Differentiation

Examples: Find $d y / d x$ for each of these functions

$$
\text { 3. } \begin{aligned}
& 3 x y+5 y^{2}-x^{2}=2 y \\
& 3 x(d y / d x)+y^{(3)}+10 y \cdot d y / d x-2 x=2 \cdot d y / d x \\
& 3 x(d y / d x)+10 y d y / d x-2 d y / d x=2 x-3 y
\end{aligned}
$$

$$
\begin{array}{ll}
d y / d x(3 x+10 y-2)=2 x-3 y \\
d y / d x=\frac{2 x-3 y}{3 x+10 y-2}
\end{array} \quad \frac{\text { page } 89}{Q 1}
$$

Implicit Differentiation

Note: When we are differentiating $3 x^{2}$, we say $\frac{d}{d x} 3 x^{2}$ (when the function isn't $y=3 x^{2}$)

When y is a term in the function, we differentiate using the chain rule.
E.g. y^{4}

Implicit Differentiation
Examples: Find $d y / d x$ for each of these functions

$$
\text { 2. } \begin{aligned}
& x^{2}-3 x y+y^{2}=4 \\
& 2 x-3 x(d y / d x)+y(-3)+2 y \cdot d y / d x=0 \\
& 2 y \cdot d y / 2 x-3 x(d y / d x)=3 y-2 x \\
& d y / d x(2 y-3 x)=3 y-2 x \\
& d y / d x=\frac{3 y-2 x}{2 y-3 x}
\end{aligned}
$$

Implicit Differentiation

Examples: Find $d y / d x$ for each of these functions

4. $\ln (x+y)=\tan ^{-1} x$ Inverse trig. fucntions example

Equations of Tangents
Example:
A curve is defined by the implicit equation $x^{2}+y^{2}+2 x-4 y=15$
Find the equation of the tangent at the point $(3,4)$ on the curve.

$$
\begin{aligned}
& m=d y / d x \\
& d / d x\left(x^{2}+y^{2}+2 x-4 y=15\right) \\
& =2 x+2 y / d x+2-4 d y / d x=0 \\
& d y / d x(2 y-4)=-2 x-2 \\
& d y / d x=\frac{2 x-2}{2 y-4}=\frac{-x-1}{y-2} \quad \text { at }(3,4) \\
& m=\frac{-3-1}{4-2}=\frac{-4}{2}=-2 \\
& y-4=-2(x-3) \\
& y=-2 x+10
\end{aligned}
$$

Starter

The equation $x^{4}+y^{4}+9 x-6 y=14$ defines a curve passing through the point
$\mathrm{A}(1,2)$.
Obtain the equation of the tangent to the curve at A .

$$
\begin{aligned}
& 4 x^{3}+4 y^{3} d y / d x+9-6 d y / d x=0 \\
& d y / d x\left(4 y^{3}-6\right)=-4 x^{3}-9 \\
& d y / d x=\frac{-4 x^{3}-9}{4 y^{3}-6} \text { at } A(1,2) \\
& m=\frac{-4(1)^{3}-9}{4(2)^{3}-6}=\frac{-13}{26}=-\frac{1}{2} \\
& y-2=-\frac{1}{2}(x-1) \\
& 2 y=-x+5
\end{aligned}
$$

Implicit Differentiation and the second derivative
Examples: Find $d y / d x$ and $d^{2} y / d x^{2}$

$x^{2}+2 x y=1$

$$
\begin{aligned}
2 x+2 x(d y / d x)+y(2) & =0 \\
2 x d y / d x & =-2 x-2 y \\
d y / d x & =\frac{-2 x-2 y}{2 x}=\frac{-x-y}{x}
\end{aligned}
$$

$$
d^{2} y / d x^{2}=\frac{x(-1-d y / d x)-(-x-y)(1)}{x^{2}}
$$

$$
=\frac{x(-1-d y / d x)+x+y}{x^{2}}
$$

$$
=\frac{x\left(-1-\left(\frac{x-y}{x}\right)\right)+x+y}{x^{2}}
$$

$$
=\frac{x\left(\frac{-x+x+y}{x}\right)+x+y}{x^{2}}
$$

$$
d^{2} y / d x^{2}=\frac{y+x+y}{x^{2}}=\frac{2 y+x}{x^{2}}
$$

$$
=\frac{2 y^{2} x_{2}-4 x x^{2} d x d x+2 x y^{2} d x+2 y^{3}}{(1-2 x)^{2}}
$$

$$
=\frac{d y / 6 x\left(a y-40 y^{2}+2 x y^{2}\right)+2 y^{2}}{(1-2 x y)^{2}}
$$

$$
-\frac{\left(\frac{4 x^{2}}{1-2 y}\right)\left(2 y-2 x y y^{2}\right)+2 y^{2}}{(1-2 x y)^{2}}
$$

$$
=\frac{\frac{2 y^{3}}{1-2 y}-\frac{2 x y^{3}}{1-2 y}+2 y^{3}}{(1-2 x)^{2}}
$$

$$
=\frac{2 y^{3}-2 x y^{4}+2 y^{3}(1-2 x y)}{(1-2 x y)^{3}}
$$

$$
=\frac{2 y^{3}-2 x y^{4}+2 y^{3}-4 x y^{4}}{(1-2 x y)^{3}}
$$

$$
=4 x^{3}-6 x 4^{4} \quad 2^{3}(2 \tan 2 a)
$$

(2) (c) $\sin ^{2}\left(2 x-\frac{\pi}{6}\right)$
$\left[\sin \left(2 x-\frac{\pi}{6}\right)\right]^{2}$
$2\left[\sin \left(2 x-\frac{\pi}{6}\right)\right] \cdot 2 \cos \left(2 x-\frac{\pi}{6}\right)$
$=4 \sin \left(2 x-\frac{\pi}{6}\right) \cos \left(2 x-\frac{\pi}{6}\right)$

L.H.S $x^{2}\left(\frac{\left(4 x \cos x+\left(6-x^{2}\right) \sin x\right.}{x t^{2}}\right)+4 x\left(\frac{x \cos x-2 \sin x}{x^{32}}\right)+\left(x^{2}+2\right)\left(\frac{\sin x}{x^{2}}\right)$ $-4 \frac{\cos +6 / x-x^{2} h x+4 \cos x-8 \sin x+x^{3} \sin x+2 \sin x}{x^{2}}$ $=\frac{0}{x^{2}}=0$ er. R. s
QED
(g) $\frac{x^{2} \ln x}{x+1}$
$f^{\prime}(x) \Rightarrow x+1 \frac{\left(x^{2}\left(\frac{1}{x}\right)+\ln x \cdot(2 x)\right)-x^{2} \ln x \cdot(1)}{(x+1)^{2}}$
$\Rightarrow x+1 \frac{(x+2 x \ln x)-x^{2} \ln x}{(x+1)^{2}}$
$\Rightarrow \frac{x^{2}+22^{2} \ln x+x+2 x \ln x-x^{2} \ln x}{(x+1)^{2}}$
$\Rightarrow \frac{x^{2}+x+2 x \ln x+x^{2} \ln x}{(x+1)^{2}}$
$\Rightarrow \frac{x(x+1+2 \ln x+x \ln x)}{(x+1)^{2}}$

$$
\begin{aligned}
& y=x^{3} e^{-x} \\
& d y / d x=-x^{3} e^{-x}+3 x^{2} e^{-x}=0 \text { at sip.'s } \\
& x^{2} e^{-x}(-x+3)=0 \\
& x^{2} e^{-x}=0 \quad x=3 \\
& \underline{x=0} \quad \begin{array}{l}
e^{-x} \neq 0 \\
\text { no solvion }
\end{array} \\
& \begin{array}{c}
y=x^{3} e^{-x} \\
y=27 e^{-3} \\
y=0
\end{array} \\
& d^{2} y / d x^{2}=x^{3} e^{-x}-6 x^{2} e^{x}+6 x e^{-x} \text { rising } \\
& \begin{array}{l}
\text { at } x=0 d^{2} y / d x^{2}=0 \quad(0,0) \text { ptof of linfuction } \\
\text { at } x=3
\end{array} d^{2} y / d x^{2}=-0.44 \text {. ... Max. of }\left(3,27 e^{-3}\right)
\end{aligned}
$$

