Q1. Solve the following:
(a)
$\log _{1 / 3} 27=x$
(b) $\log _{16} 32=x$

Q2. Solve the equation $\log _{5}(x-2)=1-\log _{5}(x-6)$

Q3. Simplify $\log _{9} 3-\log _{9} 6+\log _{9} 18$

Q4. The size of the human population, N, can be modelled using the equation $N=N_{0} e^{r t}$ where N_{0} is the population in 2006, t is the time in years since 2006, and r is the annual rate of increase in the population.
(a) In 2006 the population of the United Kingdom was approximately 61 million, with an annual rate of increase of $1 \cdot 6 \%$. Assuming this growth rate remains constant, what would be the population in 2020?
(b) In 2006 the population of Scotland was approximately $5 \cdot 1$ million, with an annual rate of increase of 0.43%.

Assuming this growth rate remains constant, how long would it take for Scotland's population to double in size?

Q5.

The diagram shows part of the graph of $y=\log _{3} x$.
(a) Find the values of a and b.
(b) Sketch the graph of $\mathrm{y}=\log _{3}(\mathrm{x}+1)-3$.

Q6.
The graph opposite illustrates the law $y=k x^{n}$.

Find the values of k and n .

