Q1. Solve the following:

(a)
$$Log_{1/3}27 = x$$

(b)
$$log_{16}32 = x$$

- Q2. Solve the equation $log_5(x 2) = 1 log_5(x 6)$
- Q3. Simplify $log_93 log_96 + log_918$
- Q4. The size of the human population, N, can be modelled using the equation $N = N_0 e^{rt}$ where N_0 is the population in 2006, t is the time in years since 2006, and t is the annual rate of increase in the population.
 - (a) In 2006 the population of the United Kingdom was approximately 61 million, with an annual rate of increase of 1.6%. Assuming this growth rate remains constant, what would be the population in 2020?
 - (b) In 2006 the population of Scotland was approximately 5·1 million, with an annual rate of increase of 0·43%.

Assuming this growth rate remains constant, how long would it take for Scotland's population to double in size?

Q5.

The diagram shows part of the graph of $y = log_3 x$.

- (a) Find the values of a and b.
- (b) Sketch the graph of $y = log_3(x + 1) 3$.

Q6.

The graph opposite illustrates the law $y = kx^n$.

Find the values of k and n.

