Logarithmic Differentiation
When a function involves the product or quotient of powers or roots, logarithmic differentiation can be used to find the derivative of the function.

$$
\text { E.g. } 3^{x} \text { or } y=2 x+3
$$

We take logarithms to simplify the differentiation.

Logarithmic Differentiation
Examples:

$$
\text { 2. } y=\frac{x^{3}}{\sqrt{x+4}}=\frac{x^{3}}{(x+4)^{\frac{1}{2}}}
$$

$$
\ln y=\ln \frac{x^{3}}{(x+4)^{2}}
$$

$$
\ln y=\ln x^{3}-\ln (x+4)^{\frac{1}{2}}
$$

$$
\ln y=3 \ln x-\frac{1}{2} \ln (x+4)
$$

$$
\frac{1}{y} d y / d x=\frac{3}{x}-\frac{1}{2(x+4)} \cdot 1
$$

$$
\frac{1}{y} d y / d x=\frac{6(x+4)-x}{2 x(x+4)}=\frac{5 x+24}{2 x(x+4)}
$$

$$
d y / d x=y \cdot \frac{5 x+24}{2 x(x+4)}
$$

$$
d y / d x=\frac{x^{3}}{(x+4)^{2}} \cdot \frac{5 x+24}{2 x(x+4)}
$$

$$
=\frac{x^{3}(5 x+24)}{2 x(x+4)^{3 / 2}}
$$

$$
d y / d x=\frac{x^{2}(5 x+24)}{2(x+4)^{1 / 2}}
$$

$$
\text { On a suitable domain, a function is defined by } f(x)=\frac{e^{x^{2}-1}}{x^{2}-1} \text {. }
$$

$$
\begin{aligned}
& \text { Find } f^{\prime}(x) \text {, simplifying your answer. } \\
& f^{\prime}(x)=\frac{\left(x^{2}-1\right)\left(2 x e^{x^{2}-1}\right)-e^{x^{2}-1}(2 x)}{\left(x^{2}-1\right)^{2}}
\end{aligned}
$$

$$
=\frac{2 x^{3} e^{x^{2}-1}-2 x e^{x^{2}-1}-2 x e^{x^{2}-1}}{\left(x^{2}-1\right)^{2}}
$$

$$
=\frac{2 x^{3} e^{2}-1-4 x e^{x^{2}-1}}{\left(x^{2}-1\right)^{2}}
$$

$$
=\frac{\frac{2 x e^{x^{2}-1}\left(x^{2}-2\right)}{\left(x^{2}-1\right)^{2}}}{x}
$$

$$
\begin{aligned}
& y=\frac{e^{x^{2}-1}}{x^{2}-1} \\
& \ln y=\ln e^{x^{2}-1}-\ln \left(x^{2}-1\right) \\
& \ln y=\left(x^{2}-1\right) \ln e-\ln \left(x^{2}-1\right) \\
& \ln y=x^{2}-1-\ln \left(x^{2}-1\right) \\
& \frac{1}{y} d y / d x=2 x-\frac{2 x}{x^{2}-1} \\
& \frac{1}{y} d y / d x=\frac{2 x\left(x^{2}-1\right)-2 x}{x^{2}-1} \\
& d y / d x=\frac{2 x^{3}-2 x-2 x}{x^{2}-1} \frac{e^{x^{2}-1}}{x^{2}-1} \\
& d y / d x=\frac{\left(2 x^{3}-4 x\right) e^{x^{2}-1}}{\left(x^{2}-1\right)^{2}} \\
& =\frac{2 x e^{x^{2}-1}\left(x^{2}-2\right)}{\left(x^{2}-1\right)^{2}}
\end{aligned}
$$

Logarithmic Differentiation

Examples:

1. $y=2^{x+3}$
$\ln y=\ln 2^{x+3}$
$\ln y=(x+3) \ln 2$
$\ln y=\ln 2 x+3 \ln 2$ $\begin{aligned} \frac{1}{y} d y / d x & =\ln 2 \\ d y / d x & =y \ln 2\end{aligned}$
$d y / d x=2^{x+3} \cdot \ln 2$
Logarithmic Differentiation
Examples:

$$
\text { 3. } y-\frac{x^{x}}{\sqrt{\sin x} x}=\frac{x e^{x^{2}}}{(\sin x)^{2}}
$$

$$
\ln y=\ln \left(\frac{x e^{x^{2}}}{(\sin x)^{1}}\right)
$$

$$
\ln y=\ln x e^{x^{x^{2}}}-\ln (\sin x)^{\frac{1}{2}}
$$

$$
\ln y=\ln x+\ln x^{x^{2}}-\frac{1}{2} \ln (\sin x)
$$

$$
\operatorname{ly} y \cdot \ln x+x^{2} \ln -\frac{1}{2} \ln \sin x
$$

$$
\ln y=\ln x+x^{2}-\frac{1}{2} \ln \sin x
$$

$$
\frac{1}{y} d y d x=\frac{1}{x}+2 x=\frac{\cos x}{\sin x}
$$

$$
d y / d x=\frac{2 \sin x+4 x^{2} \sin x-x \cos x}{2 x \sin k} \cdot \frac{x e^{x^{2}}}{(\sin x)^{\frac{1}{2}}}
$$

$$
\text { For } y=3^{2} \text {, obtain } \frac{d y}{d x}
$$

$$
\ln y=\ln 3^{x^{2}}
$$

$$
\ln y=x^{2} \cdot \ln 3
$$

$$
\frac{1}{y} d y / d x=\ln 3.2 x
$$

$$
d y / d x=\ln 3 \cdot 2 x \cdot 3^{x^{2}}
$$

