AH Logarithmic Differentiation.notebook

3

Logarithmic Differentiation

When a function involves the product or quotient of powers or roots, logarithmic differentiation can be used to find the derivative of the function.

E.g. 3^x or $y = 2^{x+3}$

We take logarithms to simplify the differentiation.

Logarithmic Differentiation

Examples: 1. $y=2^{xx3}$ $lny = ln 2^{x+3}$ lny = (x+3)ln 2 lny = lnd.x + 3ln 2 $\frac{1}{y} \frac{dy}{dx} = ln 2$ $\frac{dy}{dx} = \frac{y}{ln 2}$

Logarithmic Differentiation Examples: 2. $y = \frac{x^3}{\sqrt{x+4}} = \frac{x^3}{(x+4)^4}$ $\ln y = \ln \frac{x^3}{(x+4)^{\frac{1}{2}}}$ $\begin{array}{l} \begin{array}{c} \begin{array}{c} c_{1} & c_{1} & (x+4)^{x} \\ \\ l_{1} & g = l_{1} \\ x^{3} \\ \\ \end{array} \\ \begin{array}{c} l_{2} & g = 3 \\ \\ \end{array} \\ \begin{array}{c} c_{1} \\ \\ \\ \end{array} \\ \begin{array}{c} \frac{1}{y} \\ \frac{$ $dy_{dx} = y \cdot \frac{5x+24}{2x(x+4)}$ dy $x = \frac{x^3}{(x+4)^4} + \frac{5x+24}{2x(x+4)}$ $=\frac{\chi^{3}(5x+24)}{\chi(x+4)^{3/2}}$ $\frac{dy}{dx} = \frac{x^{2}(5x+24)}{2(5x+4)^{3/2}}$

Logarithmic Differentiation Examples: $3. y = \frac{xe^{y^2}}{\sqrt{\sin x}} = \frac{xe}{(\sin x)^4}$ $lny = ln\left(\frac{xe^{x^{i}}}{(sinx)^{t}}\right)$ $hy = \ln x e^{x^{2}} - \ln(\sin x)^{\frac{1}{2}}$ $hy = \ln x + \ln e^{x} - \frac{1}{2} \ln(\sin x)^{\frac{1}{2}}$ $hy = \ln x + \ln e^{x} - \frac{1}{2} \ln \sin^{x}$ $hy = \ln x + x^{2} \ln e^{-\frac{1}{2}} \ln \sin^{x}$ $hy_2 hx + x^2 - \frac{1}{2} hsinx$ $\frac{1}{9} \frac{dy}{dx} = \frac{1}{x} + 2x - \frac{1}{2 \sin x} \cdot \cos x$ $\frac{1}{y} \frac{dy}{dx} = \frac{1}{x} + 2x - \frac{\cos x}{2\sin x}$ $\frac{1}{y} \frac{dy}{dx} = \frac{2 \sin x + 4x \sin x - x \cos x}{2x \sin x}$ dy/dx = 2 sinx + 4x2 sinx - xcosx $dy_{dx} = \frac{k e^{x^{2}} (a_{sinx} + 4x^{4} sinx - x\cos x)}{b^{2}}$ 2 #(sinx)32 = ext (2 sinx+ 4xt sinx-xcosx) 2(sinx)32

On a suitable domain, a function is defined by $f(x) = \frac{e^{x^{-1}}}{2}$ On a suitable domain, a function is defined by $f(x) = \frac{1}{x^2 - 1}$. Find f'(x), simplifying your answer. $\begin{cases} f'(x) = (x^2 - 1)(\frac{1}{2x}e^{x^{k-1}}) - e^{x^{k-1}}(\frac{1}{2x}) \\ (x^2 - 1)^2 \\ = \frac{1}{2x^3}e^{x^{k-1}} - \frac{1}{2x}e^{x^{k-1}} - \frac{1}{2x}e^{x^{k-1}} \\ (x^2 - 1)^{k} \\ = \frac{1}{2x^3}e^{x^{k-1}} - \frac{1}{2x}e^{x^{k-1}} \\ (x^2 - 1)^{k} \\ = \frac{1}{2x^3}e^{x^{k-1}} - \frac{1}{2x}e^{x^{k-1}} \\ (x^2 - 1)^{k} \\ = \frac{1}{2x^3}e^{x^{k-1}} - \frac{1}{2x}e^{x^{k-1}} \\ (x^2 - 1)^{k} \\ = \frac{1}{2x^3}e^{x^{k-1}} - \frac{1}{2x}e^{x^{k-1}} \\ (x^2 - 1)^{k} \\ = \frac{1}{2x^3}e^{x^{k-1}} - \frac{1}{2x}e^{x^{k-1}} \\ (x^2 - 1)^{k} \\ = \frac{1}{2x^3}e^{x^{k-1}} - \frac{1}{2x}e^{x^{k-1}} \\ (x^2 - 1)^{k} \\ = \frac{1}{2x^3}e^{x^{k-1}} - \frac{1}{2x}e^{x^{k-1}} \\ (x^2 - 1)^{k} \\ (x^2 - 1)^{k} \\ = \frac{1}{2x^3}e^{x^{k-1}} - \frac{1}{2x^{k-1}} \\ (x^2 - 1)^{k} \\ (x^2 - 1)^$ = $2xe^{x+1}(x-2)$ $(x^2 - \beta^2)$

For $y = 3^{x^2}$, obtain $\frac{dy}{dx}$ For $y=3^{\circ}$, obtain $\frac{dx}{dx}$. ln $y = \ln 3^{\times 2}$ ln $y = x^{2} \cdot \ln 3$ $\frac{1}{y} \frac{dy}{dx} = \ln 3 \cdot 3x$ $\frac{dy}{dx} = \ln 3 \cdot 2x \cdot 3^{\times 2}$

AH Logarithmic Differentiation.notebook

Given $e^{y} = x^{3}\cos^{2}x$, $x > 0$, show that	
$\frac{dy}{dx} = \frac{a}{x} + b \tan x$, for some constants <i>a</i> and <i>b</i> .	
State the values of <i>a</i> and <i>b</i> .	3
$l_{ne} = l_n(x^3 cos^2 x)$	
yhre= lnx3 + lncos2x	
y = 3 hx + 2 h cos x	
$\frac{dy}{dx} = \frac{3}{x} + \frac{2}{\cos x} \cdot (-\sin x)$	
$=\frac{3}{x}-\frac{2\sin x}{\cos x}=\frac{3}{x}-2\tan x$ $\alpha=3$	s=-5

(<i>a</i>)	Obtain $\frac{dy}{dx}$ when y is defined as a function of x by the equation	
	$y + e^y = x^2$.	3
(b)	Given $f(x) = \sin x \cos^3 x$, obtain $f'(x)$.	3