Matrices
Numbers are put into arrays to help with multiplication, division etc.

A Matrix (matrices pl.) is a rectangular array of numbers arranged in rows and columns.

They were first introduced to help solve sets of linear equations and are now useful for many applications of Maths including computer generated imaging, electronics, probability \& statistics.

Matrices

Annxn matrix is known as a Square Matrix.

A Zero Matrix is one in which every element is zero.

Addition and Subtraction of Matrices

If matrices are of the same order they can be added and subtracted
You can add and subtract the corresponding elements.

Examples:

$$
\begin{aligned}
& \text { 1. } \begin{aligned}
&\left(\begin{array}{ccc}
3 & 4 & 5 \\
-2 & 1 & 3
\end{array}\right)+\left(\begin{array}{ccc}
2 & -1 & 2 \\
3 & 1 & -6
\end{array}\right) \\
&=\left(\begin{array}{ccc}
5 & 3 & 7 \\
1 & 2 & -3
\end{array}\right) \\
& \text { 2. }\left(\begin{array}{cc}
5 & 1 \\
-2 & 3
\end{array}\right)-\left(\begin{array}{ll}
1 & -2 \\
2 & 4
\end{array}\right) \\
&=\left(\begin{array}{cc}
4 & 3 \\
-4 & -1
\end{array}\right)
\end{aligned}
\end{aligned}
$$

Matrices
If there are m rows and n columns in a matrix, then it is an $m \times n$ matrix or has order $m \times n$.

$$
\left(\begin{array}{ll}
2 & 5 \\
3 & 1
\end{array}\right) \text { is a } 2 \times 2 \text { matrix } \quad\left(\begin{array}{l}
3 \\
4 \\
7
\end{array}\right) \quad \text { is a } 3 \times 1 \text { matrix }
$$

Each number in a matrix is known as an entry or element.
The entry in row i and column j of the matrix A is denoted $a_{i j}$
E.g.

$$
A=\left(\begin{array}{ll}
2 & 5 \\
3 & 1
\end{array}\right) \quad a_{12}=5
$$

A 'Column Matrix' is one that has only one column and a 'Row Matrix' is one that only has one row.

Equal Matrices

Two matrices are equal if
(i) They are of the same order
(ii) Their corresponding entries are equal.

$$
\begin{aligned}
& \text { E.g. } \begin{aligned}
A=\left(\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right) \quad B=\left(\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right) \quad C=\left(\begin{array}{lll}
2 & 3 & 0 \\
1 & 2 & 0
\end{array}\right) \\
A=B \text { but } A \neq C
\end{aligned} \\
& \text { Example: Given that }\left(\begin{array}{cc}
2 x & 0 \\
-1 & x+y
\end{array}\right)=\left(\begin{array}{cc}
6 & 0 \\
-1 & 1
\end{array}\right), \text { find the values of } x \text { and } y . \\
& 2 x=6
\end{aligned} \quad x+y=1 .
$$

Matrices - Transpose

A Transpose of a matrix A^{\prime} or A^{\top}, is obtained by interchanging the rows and columns of matrix A.
E.g. If $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right)$ then $A^{\top}=\left(\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right)$

The Matrix has been reflected in its main diagonal (down from left to right).
The transpose has the following properties:

1. $\left(A^{\prime}\right)^{\prime}=A$
2. $(A+B)^{\prime}=A^{\prime}+B^{\prime}$
3. $(k A)^{\prime}=k A^{\prime}$

Matrix Multiplication
Two matrices A and B may only be multiplied ifthe number of columns in A is equal to the number of rows in B.
E.g. $\quad\left(\begin{array}{lll}3 & 2 & 1\end{array}\right) \times\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$ works but $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right) \times\left(\begin{array}{lll}3 & 2 & 1\end{array}\right)$ doesn't.

rows colums rows columns
 $m \times n \quad n \times P$

mxp Matrix

Matrices are always multipled row by column.

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \times\left(\begin{array}{ll}
x & y \\
z & r
\end{array}\right)=\left(\begin{array}{ll}
a x+b z & a y+b r \\
c x+d z & c y+d r
\end{array}\right)
$$

Symmetric \& Skew-Symmetric Matrices
A matrix is said to be symmetric if $A^{\prime}=A$.
E. g. $A=\left(\begin{array}{ccc}1 & 3 & 5 \\ 3 & 2 & -1 \\ 5 & -1 & 7\end{array}\right)$ then $A^{\prime}=\left(\begin{array}{ccc}1 & 3 & 5 \\ 3 & 2 & -1 \\ 5 & -1 & 7\end{array}\right)$

A matrix is skew - symmetric if $A^{\prime}=-A$.
E. g. $A=\left(\begin{array}{ccc}0 & 3 & -5 \\ -3 & 0 & 1 \\ 5 & -1 & 0\end{array}\right)$ then $A^{\prime}=\left(\begin{array}{ccc}0 & -3 & 5 \\ 3 & 0 & -1 \\ -5 & 1 & 0\end{array}\right)$

A matrix can only be skew-symmetric if the leading diagonal consists of zeros.

Order is very important in Matrix Multiplication. $A B \neq B A$ except in rare cases. Therefore in general, matrix multiplication is not commutative.

Matrix Multiplication

Examples:

1. Given $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ and $B=\left(\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right)$

Find the value of $A B$

$$
A B=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\left(\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right)=\left(\begin{array}{ll}2+2 & 5+6 \\ 6+4 & 15+12\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
4 & 11 \\
10 & 27
\end{array}\right)
$$

Matrix Multiplication
Examples:
2. Given $A=\left(\begin{array}{cc}\mathbf{2} & -\mathbf{1} \\ \mathbf{3} & \mathbf{2}\end{array}\right)$ and $B=\binom{4}{-2}$

$$
2 \times 2 \quad 2 \times 1
$$

Find the value of $A B$

$$
A B=\left(\begin{array}{cc}
2 & -1 \\
3 & 2
\end{array}\right)\binom{4}{-2}=\binom{8+2}{12}=\binom{10}{8}
$$

Starter 2.11.2016

$$
\begin{aligned}
& \text { Multiply out } \\
& \qquad \begin{array}{l}
\text { R }\left(\begin{array}{lll}
3 & 1 & 4 \\
1 & 2 & 5
\end{array}\right)\left(\begin{array}{lll}
4 & 1 & 2 \\
1 & 3 & 1 \\
7 & 4 & 3
\end{array}\right)=\left(\begin{array}{ccc}
41 & 22 & 19 \\
41 & 27 & 19
\end{array}\right) \\
2 \times 3 \\
3 \times 3
\end{array}
\end{aligned}
$$

Matrix Multiplication
We can find powers of Matrices too.
Example: Given $M=\left(\begin{array}{ll}3 & -2 \\ 0 & 3\end{array}\right)$

$$
\begin{aligned}
& \text { Find } M^{2}, M^{3} \text { and } M^{4} \\
& M^{2}=\left(\begin{array}{cc}
3 & -2 \\
0 & 3
\end{array}\right)\left(\begin{array}{cc}
3 & -2 \\
0 & 3
\end{array}\right)=\left(\begin{array}{ll}
3 \times 3+-2 \times 0 & 3 \times-2+-2 \times 3 \\
0 \times 3+3 \times 0 & 0 \times-2+3 \times 3
\end{array}\right) \\
& M^{2}=\left(\begin{array}{cc}
9 & -12 \\
0 & 9
\end{array}\right) \\
& M^{3}=\left(\begin{array}{cc}
3 & -2 \\
0 & 3
\end{array}\right)\left(\begin{array}{cc}
9 & -12 \\
0 & 9
\end{array}\right)=\left(\begin{array}{ll}
3 \times 9-2 \times 0 & 3 \times-12-2 \times 9 \\
0 \times 9+3 \times 0 & 0 \times-12+3 \times 9
\end{array}\right) \\
& M^{3}
\end{aligned}=\left(\begin{array}{cc}
27 & -54 \\
0 & 27
\end{array}\right) .
$$

Matrix Multiplication
Examples:
3. Given $P=\left(\begin{array}{cc}4 & 3 \\ -1 & 2\end{array}\right)$ and $Q=\left(\begin{array}{ccc}2 & 4 & 5 \\ 6 & 1 & -2\end{array}\right)$ $2 \times 2 \quad 2 \times 3$
Find the value of $P Q$

$$
\begin{aligned}
P Q & =\left(\begin{array}{cc}
4 & 3 \\
-1 & 2
\end{array}\right)\left(\begin{array}{ccc}
2 & 4 & 5 \\
6 & 1 & -2
\end{array}\right)=\left(\begin{array}{ccc}
8+18 & 16+3 & 20-6 \\
-2+12 & -4+2 & -5-4
\end{array}\right) \\
& =\left(\begin{array}{ccc}
26 & 19 & 14 \\
10 & -2 & -9
\end{array}\right)
\end{aligned}
$$

Properties of Matrix Multiplication \qquad

1. $\quad A(B C)=A B(C)$ Associative provided the order isn't changed.
2. $A(B+C)=A B+A C$ Distributive over addition
3. $a b=0 \Rightarrow a=0$ or $b=0$ in real numbers, this is not the case for Matrices.

Identity Matrices

The Identity Matrix is represented by $\mathrm{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ all the entries along the main diagonal are 1 's and the rest zeros (It's a square matrix).

$$
I=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { Same Idea }
$$

What happens when you multiply a matrix by I?

```
Given the matrix A, IA =AI=A
```

$$
\text { A Matrix is said to be Orthogonal if } A^{\prime} A=1=A A^{\prime}
$$

(5) (a) $A=\left(\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right)$

$$
\begin{array}{rlrl}
\text { Show that } A^{2}=4 A-7 I & \\
A^{2} & =\left(\begin{array}{cc}
1 & 12 \\
-4 & 1
\end{array}\right) & 4 A-7 I & =4\left(\begin{array}{cc}
2 & 3 \\
-1 & 2
\end{array}\right)-7\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 12 \\
-4 & 1
\end{array}\right)
\end{array}
$$

(b) $A^{3}=p A+q I$

$$
A^{3}=A\left(A^{2}\right)
$$

$$
=A(4 A-7 I)
$$

$$
4 A^{2}-7 A I
$$

$$
4(4 A-7 I)-7 A
$$

$$
16 \mathrm{~A}-28 I-7 \mathrm{~A}
$$

$$
9 A-28 I
$$

Determinant of a 2×2 Matrix

$$
\begin{aligned}
& \text { Given } \mathrm{A}=\left(\begin{array}{ll}
a & b \\
\boldsymbol{c} & d
\end{array}\right) \text {, } \operatorname{det} \mathrm{A}=a d-b c \\
& \text { or this can be written }\left|\begin{array}{ll}
\boldsymbol{a} & b \\
c & d
\end{array}\right|=a d-b c
\end{aligned}
$$

Examples:

1. $\left|\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right|=2(4)-1(3)=\underline{5}$
2. $\left|\begin{array}{cc}3 & 2 \\ -2 & 1\end{array}\right|=3(1)-2(-2)=7$

Using Identity Matrices

$$
\text { 2. Given } A=\left(\begin{array}{ccc}
2 & 2 & -4 \\
-4 & 2 & -4 \\
2 & -1 & 5
\end{array}\right) \quad \text { and } B=\left(\begin{array}{ccc}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right)
$$

Show that $A B=k l$ for some real number $k . V$
Hence obtain the matrix $A^{2} B$
$A B=\left(\begin{array}{ccc}2 \times 1+2 \times 2+-4 \times 0 & 2 \times-1+2 \times 3+-4 \times 1 & 2 \times 0+2 \times 4+-4 \times 2 \\ -4 \times 1+2 \times 2+-4 \times 0 & -4 \times-1+2 \times 3+-4 \times 1 & -4 \times 0+2 \times 4+-4 \times 2 \\ 2 \times 1+-1 \times 2+5 \times 0 & 2 \times-1+-1 \times 3+5 \times 1 & 2 \times 0+-1 \times 4+5 \times 2\end{array}\right)$
$A B=\left(\begin{array}{ccc}6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6\end{array}\right)=6 I$
$A^{2} B=A(A B)=A(6 I)=6 A I=6 A$
$=6\left(\begin{array}{ccc}2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5\end{array}\right)=\left(\begin{array}{ccc}12 & 12 & -24 \\ -24 & 12 & -24 \\ 12 & -6 & 30\end{array}\right)$

Determinant of a Square Matrix (2×2)

The determinant of a matrix is a number associated with the matrix and has many important properties and applications.

It is represented by det A or $|A|$

Determinant of a 2×2 Matrix
3. Find the values of x such that $\quad\left|\begin{array}{cc}x & 2 x \\ 2 x & x+4\end{array}\right|=1$

$$
\begin{gathered}
x(x+4)-2 x(2 x)=1 \\
x^{2}+4 x-4 x^{2}=1 \\
-3 x^{2}+4 x=1 \\
3 x^{2}-4 x+1=0 \\
(3 x-1) x-1)=0 \\
x=\frac{1}{3}, x=1
\end{gathered}
$$

Inverse of a 2×2 Matrix
Given two matrices A and B, if $A B=1$, we say that B is the inverse of A.

The inverse of a square matrix A is A^{-1} which has the property

$$
A A^{-1}=A^{-1} A=1 \quad \text { where } I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Given $\mathrm{A}=\left(\begin{array}{ll}\boldsymbol{a} & b \\ c & d\end{array}\right)$, the inverse is calculated by $\frac{1}{\operatorname{det} A}\left(\begin{array}{cc}\boldsymbol{d} & -\boldsymbol{b} \\ -\boldsymbol{c} & \boldsymbol{a}\end{array}\right)$ where

$$
\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \text { is known as the Adjoint of A or adj.(A) }
$$

Inverse of a 2×2 Matrix

$$
\begin{aligned}
& \text { Examples: } \quad \operatorname{det} A=2(11)-3(\lambda)=22-21=1 \text { simupse } \\
& \text { 1. } A=\left(\begin{array}{cc}
2 & 3 \\
7 & 11
\end{array}\right) \text {, find } A^{-1} \quad A^{-1}=\frac{1}{1}\left(\begin{array}{cc}
11 & -3 \\
-7 & 2
\end{array}\right) \\
& A^{-1}=\left(\begin{array}{cc}
11 & -3 \\
-7 & 2
\end{array}\right) \\
& \text { 2. } P=\left(\begin{array}{cc}
2 & -4 \\
-1 & 3
\end{array}\right) \text {, find } P-1 \\
& \operatorname{det} P=2(3)-(-1)(-4)=6-4=2 \\
& P^{-1}=\frac{1}{2}\left(\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
\frac{3}{2} & 2 \\
\frac{1}{2} & 1
\end{array}\right)
\end{aligned}
$$

Inverse of a 2×2 Matrix
Not all Matrices have an inverse. How do you think you could tell?

If $\operatorname{det} A=0$, then the inverse doesn't exist.
If $\operatorname{det} A \neq 0$, then the inverse does exist.

If a matrix has an inverse, it is known as invertible (or non-singular), if it doesn't have an inverse then it is non-invertible (or singular).

Starter 9.11.2016

Determine the value of p which would make this matrix singular
$\left(\begin{array}{ll}p & 3 \\ 8 & 4\end{array}\right)$
If singular det $=0$
$a d-b c$
$4 p-24=0$
$4 p=24$
$p=6$

Using the inverse to solve equations
Multiplying by the inverse can help solve equations.
E.g. $\quad A X=Y$

To find X
Premultiply by $\begin{aligned} A^{-1} \quad A^{-1} A X & =A^{-1} Y \\ I X & =A^{-1} 4 \\ X & =A^{-1} 4\end{aligned}$
This is known as Premultiplying.

To find A	$A X=Y$
Post multiply by	$A X X^{-1}=Y X^{-1}$
x^{-1}	$A=Y x^{-1}$

$$
\begin{aligned}
A X & =4 \\
A X X^{-1} & =Y X^{-1} \\
A & =4 x^{-1}
\end{aligned}
$$

```
Using the 
Examples:
1. (From book): Given A =( (\begin{array}{cc}{2}&{3}\\{7}&{11}\end{array})
a) Show that A}\mp@subsup{A}{}{2}=13A
(b) Hence show that A}\mp@subsup{\textrm{A}}{}{3}=168\textrm{A}-131\mathrm{ and that A-1}=131-\textrm{A
(1) A}\mp@subsup{A}{}{2}=(\begin{array}{cc}{2}&{3}\\{7}&{11}\end{array})(\begin{array}{cc}{2}&{3}\\{7}&{11}\end{array})=(\begin{array}{ccc}{4+21}&{6+33}\\{4+77}&{21+14}\end{array})=(\begin{array}{cc}{25}&{19}\\{71}&{142}\end{array}
BA=B( (2 2 1 
    Bn-1=([\begin{array}{cc}{25}&{2}\\{91}&{14}\end{array})=\mp@subsup{n}{}{2}
(b) }\mp@subsup{A}{}{3}=A(\mp@subsup{A}{}{2}
        =>A(BA-I)
        = 13A2-AI 
* }\mp@subsup{A}{}{-1}=13I-
        We knos A}=13A-
```


Properties of the Inverse and Determinant
Given that $A=\left(\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right)$ and $B=\left(\begin{array}{ll}7 & 2 \\ 4 & 1\end{array}\right)$, show that

$B^{-1}=\frac{1}{1}\left(\begin{array}{cc}1 & -2 \\ -1\end{array}\right) \cdot\left(\begin{array}{cc}-1 & -2 \\ 4 & -7\end{array}\right)$
$B^{-1}=-1=\left(\begin{array}{cc}1-1 & -5 \\ -1 & -1\end{array}\right)\left(\begin{array}{cc}4 & -7 \\ 4 & -7\end{array}\right)=\left(\begin{array}{cc}-23 & 41 \\ 9 & -16\end{array}\right)$
$B A=\left(\begin{array}{ll}7 & 2 \\ 0 & 1\end{array}\right)\binom{2}{1}$

$A^{-1} B^{-1}=(B A)^{-1}$
$B A A^{-1} B^{-1}=B A(B A)^{-1}$
$B I B^{-1}=I$
$B B^{-1}=I$
$I=I$

Properties of the Inverse and Determinant

$$
\begin{aligned}
& \text { Given that } A=\left(\begin{array}{ll}
2 & 5 \\
1 & 3
\end{array}\right) \text { and } B=\left(\begin{array}{ll}
7 & 2 \\
4 & 1
\end{array}\right) \text {, show that } \\
& \text { c) } \begin{aligned}
& \operatorname{det}(A B)=\operatorname{det} A \times \operatorname{det} B \text { or }|A B|=|A||B| \\
& \operatorname{det} A B=\frac{1}{34(5)-9(19)}=\frac{1}{-1}=-1 \\
& \operatorname{det} A=1 \times-1=-1 \\
& \operatorname{det} B=-1 \\
& \operatorname{det} A B=\operatorname{det} A \times \operatorname{det} B
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& U \text { sing the inverse to solve equations } \\
& \text { Examples: } \\
& \text { 2. Use matrices to solve the set of equations } \\
& 3 x+y=-1 \text { and } 4 x+3 y=2 \\
& \begin{array}{l}
3 x+y=1 \\
4 x+3 y=2
\end{array} \\
& \binom{3 x+y}{4 x+3 y}=\binom{-1}{2} \\
& \left(\begin{array}{ll}
3 & 1 \\
4 & 3
\end{array}\right)\binom{x}{y}=\binom{-1}{2} \\
& \begin{aligned}
\frac{x^{-1}}{\frac{1}{5}\left(\begin{array}{cc}
3 & -1 \\
-4 & 3
\end{array}\right)\left(\begin{array}{ll}
3 & 1 \\
4 & 3
\end{array}\right)}\binom{x}{y} & =\frac{x^{-1}}{5}\left(\begin{array}{cc}
3 & -1 \\
-4 & 3
\end{array}\right)\binom{-1}{2} \\
\binom{x}{y} & =\frac{1}{5}\binom{3(1)-1(2)}{-4(1)+3(2)}
\end{aligned} \\
& \binom{x}{y}=\frac{1}{5}\binom{-5}{10}=\binom{-1}{2} \\
& x=-1, y=2
\end{aligned}
$$

Properties of the Inverse and Determinant

$$
\begin{aligned}
& \text { Given that } A=\left(\begin{array}{ll}
2 & 5 \\
1 & 3
\end{array}\right) \text { and } B=\left(\begin{array}{ll}
7 & 2 \\
4 & 1
\end{array}\right) \text {, show that } \\
& A B=\left(\begin{array}{cc}
2 & 5 \\
1 & 3
\end{array}\right)\left(\begin{array}{cc}
7 & 2 \\
4 & 1
\end{array}\right)=\left(\begin{array}{cc}
34 & 9 \\
19 & 5
\end{array}\right) \\
& (A B)^{-1}=\frac{1}{-1}\left(\begin{array}{cc}
5 & -9 \\
-19 & 34
\end{array}\right)=\left(\begin{array}{cc}
-5 & 9 \\
19 & -34
\end{array}\right) \\
& B^{-1} A^{-1}=\left(\begin{array}{cc}
-1 & 2 \\
4 & -7
\end{array}\right)\left(\begin{array}{cc}
3 & -5 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{cc}
-5 & 9 \\
19 & -34
\end{array}\right) \\
& \Rightarrow(A B)^{-1}=B^{-1} A^{-1}
\end{aligned}
$$

Determinant of a 3×3 Matrix

Determinant of a 3×3 Matrix
Examples: Calculate the determinant of the following

$$
\begin{aligned}
& \text { (i) } A=\left(\begin{array}{ccc}
1 & 2 & 1 \\
4 & -2 & 3 \\
2 & 1 & -1
\end{array}\right)|A|=1\left|\begin{array}{cc}
-2 & 3 \\
1 & -1
\end{array}\right|-2\left|\begin{array}{rr}
4 & 3 \\
2 & -1
\end{array}\right|+1\left|\begin{array}{cc}
4 & -2 \\
2 & 1
\end{array}\right| \\
& =1((-2 \times-1)-(3 \times 1))-2((4 \times-1)-(3 \times 2))+1((4 \times 1)-\underset{(2 \times 2)}{ }) \\
& =1(-1)-2(-10)+1(8)=27 \\
& \text { (ii) } B=\left(\begin{array}{ccc}
3 & -2 & 0 \\
1 & 4 & 5 \\
0 & -1 & 2
\end{array}\right)|B|=3\left|\begin{array}{cc}
4 & 5 \\
-1 & 2
\end{array}\right|-\left(\left.-2| | \begin{array}{ll}
1 & 5 \\
0 & 2
\end{array}|+0| \begin{array}{cc}
1 & 4 \\
0 & -1
\end{array} \right\rvert\,\right. \\
& =3(8+5)+2(2-0)+0 \\
& =39+4 \\
& =43
\end{aligned}
$$

Starter

16.11.2016

Calculate the determinant of A given
$A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 & -4 & 1 \\ 0 & 3 & -1\end{array}\right)$
$\operatorname{det} A=1\left|\begin{array}{rr}-4 & 1 \\ 3 & -1\end{array}\right|-2\left|\begin{array}{ll}0 & 1 \\ 0 & -1\end{array}\right|+3\left|\begin{array}{rr}0 & -4 \\ 0 & 3\end{array}\right|$
$=1(4-3)-2(0-0)+3(0-0)$
$=1$

Determinant of a 3×3 Matrix
3. Find the values of k for which the $\operatorname{det} A=0$

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
k & 1 & 1 \\
2 & -2 & 3 \\
-1 & -1 & -k
\end{array}\right)|A|=k\left|\begin{array}{cc}
-2 & 3 \\
-1 & -k
\end{array}\right|-1\left|\begin{array}{cc}
2 & 3 \\
-1 & -k
\end{array}\right|+1\left|\begin{array}{cc}
2 & -2 \\
-1 & -1
\end{array}\right| \\
=k(2 k+3)-1(-2 k+3)+1(-2-2)=0 \\
=2 k^{2}+3 k+2 k-3-4=0 \\
=2 k^{2}+5 k-7=0 \\
(2 k+7)(k-1)=0 \\
k=-\frac{7}{2}, k=1
\end{gathered}
$$

Inverse of a 3×3 Matrix
We can get the inverse of a 3×3 matrix by carrying out row operations. Row operations can include interchanging rows, multiplying by a scaler and adding/sutracting rows from each other.

We know that $A \times A^{-1}=1$, so we use the row operations to convert A into I and record the result to get A^{-1}.

Start at the top left entry and work under the diagonal to begin with.

Inverse of a 3×3 Matrix
Examples:
2. Find B^{-1}, given $B=\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 2 & 0 & 1\end{array}\right) \quad B^{-1}=\left(\begin{array}{ccc}\frac{1}{2} & -\frac{1}{4} & 0 \\ 0 & \frac{1}{2} & 0 \\ -1 & \frac{1}{2} & 1\end{array}\right)$
$\left(\begin{array}{ccc}7 & 2 & 1 \\ 0 & 3 & -1 \\ -3 & 4 & -2\end{array}\right)$

Inverse of a 3×3 Matrix
Examples:
3. Find C^{-1}, given $C=\left(\begin{array}{ccc}7 & 2 & 1 \\ 0 & 3 & -1 \\ -3 & 4 & -2\end{array}\right)$

Matrix Transformations

Matrices can be used to transform coordinates and objects on a Plane.
The coordinates can be written in matrix form and then can be multiplied by a matrix or scalar for Rotation, Reflection or Dilation (Scaling).

If under a transformation a point is its own image, it is then called invariant.

Matrix Transformations

Reflection in the x-axis

What can we multiply P by to get $\binom{x}{-y}$?
$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ is the matrix associated with reflection in the x - axis.

Matrix Transformations

$$
\text { Reflection in the line } y=x
$$

What can we multiply P by to get $\binom{y}{x}$?

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{x}{y}=\binom{y}{x}
$$

$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ is the matrix associated with reflection in the line $y=x$.

Matrix Transformations

Points can be rotated by an angle around the origin.

The matrix associated with rotation is $R=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
where points are rotated anti-clockwise around the origin.

Matrix Transformations

If we use R to rotate a point anti-clockwise by θ, then we rotate the point back in a clockwise direction using R^{-1}.

$$
\begin{aligned}
R^{-1}= & \frac{1}{\cos ^{2} \theta+\sin ^{2} \theta}\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
\end{aligned}
$$

We can see that $R^{-1}=R^{\top}$, therefore $R \times R^{\top}=1$ which means R is orthogonal.

The Reflection Matrix

The Reflection Matrix

$$
S=\left(\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right)
$$

$A=\binom{x}{y}$ represents the point (x, y)
Pre-multiplying A by the reflection matrix has the effect of reflecting the point (x, y) in the line through the origin which makes an angle of θ° where $-90 \leq \theta^{\circ} \leq 90$
The point gained from the reflection is represented by $\left(x^{\prime}, y^{\prime}\right)$.

Matrix Transformations

Example: Calculate the coordinates of the image of the point $(3,1)$ under a 60° rotation about the origin

$$
\begin{aligned}
& \left(\begin{array}{cc}
\cos \frac{\pi}{3} & -\sin \frac{\pi}{3} \\
\sin \frac{\pi}{3} & \cos \frac{\pi}{3}
\end{array}\right)\binom{3}{1} \\
& \left(\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)\binom{3}{1}=\binom{\frac{3}{2}-\frac{\sqrt{3}}{2}}{\frac{3 \sqrt{3}}{2}+\frac{1}{2}} \\
& P^{\prime}=\left(\frac{3-\sqrt{3}}{2}, 3 \sqrt{3}+1\right)
\end{aligned}
$$

Starter
23.11.2016

Write down the 2×2 matrix associated with a clockwise rotation of 30° about the origin.

$$
\left(\begin{array}{cc}
\frac{\sqrt{3}}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right)
$$

The Reflection Matrix
Example:
Find the coordinates of the point $(-3,1)$ when reflected in the line
$y=3 x$
$\operatorname{Tan}^{-1}(3)=71.6^{\circ}$

$$
\left(\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
\cos 143.2^{\circ} & \sin 143.2^{\circ} \\
\sin 143.2^{\circ} & -\cos 143.2^{\circ}
\end{array}\right)\binom{-3}{1}
$$

$$
\left(\begin{array}{cc}
-0.8 & 0.599 \\
0.599 & 0.8
\end{array}\right)\binom{-3}{1}
$$

$$
\binom{-0.8(-3)+0.599(1)}{0.599(-3)+0.8(1)}=\binom{3}{-1}
$$

Composite Transformations

A composite transformation is a matrix that undergoes more than one transformation.

Let's say we want to reflect $P(x, y)$ in the x - axis and then reflect it in the line $y=x$.

$$
\begin{aligned}
& M_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& M_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Composite Transformation $M_{2} \times M_{1} \times\binom{ x}{y}$

Dilation (Scaling) \qquad
Think about what matrix you could multiply a point (x, y) by to scale it.

$$
\left(\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right) \text { premultiplies by the column matrix }\binom{x}{y}
$$

The point (x, y) will scale x by λ and y by μ

Composite Transformations
Example: The point $P(x, y)$ is given an anticlockwise rotation of $\frac{\tau}{2}$ radians about the origin and the image is reflected in the x - axis

$$
\begin{aligned}
& \text { (a) Find the matrix associated with this composite function } \\
& M_{1}=\left(\begin{array}{cc}
\cos \frac{\pi}{2} & -\sin \frac{\pi}{2} \\
\sin \frac{\pi}{2} & \cos \frac{\pi}{2}
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) M_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& M_{2} \times M_{1}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

(b) Find the coordinates of the image of $P(x, y)$ under this composite transformation $\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)\binom{x}{y}=\underline{\binom{-y}{-x}}=\left(-y_{1}-x\right)$

Dilation (Scaling)
Examples:

1. The point $(-6,8)$ is scaled to give $(4,24)$. Find the scaling matrix

$$
\begin{aligned}
& \left(\begin{array}{cc}
\lambda & 0 \\
0 & N
\end{array}\right)\binom{-6}{8}=\binom{4}{24} \quad \begin{array}{c}
8 N=24 \\
-6 \lambda=4
\end{array} \begin{array}{c}
\lambda=-\frac{2}{3} \\
\left(\begin{array}{cc}
-\frac{2}{3} & 0 \\
0 & 3
\end{array}\right) \\
\text { ind the effect of }(-3,-9) \text { using the scaling matrix }\left(\begin{array}{cc}
-2 & 0 \\
0 & \frac{2}{3}
\end{array}\right) \\
\left(\begin{array}{cc}
-2 & 0 \\
0 & \frac{2}{3}
\end{array}\right)\binom{-3}{-9}=\binom{6}{-6} \quad(6,-6)
\end{array}, l
\end{aligned}
$$

General Linear transformation of a line

```
( ll}\begin{array}{l}{\boldsymbol{b}}\\{c}\end{array}d)\mathrm{ can transform sets of points on a line b,c*=0
```

Example:
Find the 2×2 matrix which would transform $(-3,2)$ to $(-8,-13)$ and $(5,4)$ to $(6,7)$

