Daily Practice
30.11 .15

Q1. State the equation of the line that passes through
$x_{1} y_{1} \quad x_{2} y_{2}$
(0,8) and $(3,1) \quad 1-8 \quad-7 \quad y=-\frac{7}{3} x+8$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-8}{3-0}=\frac{-7}{3}$
Q2. Simplify $\sqrt{ } 500$

$$
=\sqrt{100} \times \sqrt{5}=10 \sqrt{5}
$$

Q3. Solve the equation $4(x-7)=3 x+19$

$$
\begin{aligned}
4 x-28 & =3 x+19 \quad x=47 \\
+28 & +28 \\
4 x & =3 x+47
\end{aligned}
$$

Q4. Calculate the mean and median of $-2,3,5,6,8,9$
Mean $=\frac{29}{6}=4.8(1 \mathrm{dp})$ Median $=\frac{5+6}{2}=5.5$

Today we will be marking the check-up, homework and revising over multiplying out and simplifying.

1. $\sqrt{250}$
$\sqrt{25} \times \sqrt{10}$

$$
\text { 2. } 2 \sqrt{3}+5 \sqrt{3}-\sqrt{3} ~ c ~(~+\sqrt{3}
$$

$$
\begin{aligned}
& \text { 3. } \sqrt{50}+3 \sqrt{2}-\sqrt{32} \\
& \sqrt{25} \sqrt{2}+3 \sqrt{2}-\sqrt{16} \sqrt{2} \\
& \begin{array}{c}
5 \sqrt{2}+3 \sqrt{2}-4 \sqrt{2} \\
=
\end{array}
\end{aligned}
$$

$\sqrt{4} \sqrt{6}-\sqrt{6}$
$2 \sqrt{6}-\sqrt{6} \checkmark$
$=\sqrt{6}-$

$$
\begin{gathered}
\sqrt{3}(2 \sqrt{2}-\sqrt{2}) \\
=\sqrt{3}(\sqrt{2}) \\
=\sqrt{6}
\end{gathered}
$$

5. $\frac{\sqrt{25}}{\sqrt{4}}=\frac{5}{2}$
6. $\sqrt{\frac{300}{75}}=\sqrt{4}=2$
7. Write with a rational denominator $\frac{2+\sqrt{3}}{\sqrt{3}} \times \sqrt{3}$

(3) 15 double brackets.

Write an expression for the area of each of these rectangles

3.

4.

(2)

Questions
(1) $(x+4)(x+1)$

(2) $\left(\begin{array}{l}x^{2}+5 x+4 \\ 2 x+3)(x-1)\end{array}\right.$
(3) $\left(\begin{array}{c}2 x^{2}+x-3 \\ x+1)(x+3)\end{array}\right.$
(4) $\left(\begin{array}{l}5 x^{2}+16 x+3 \\ 2 x+2)(x+5)\end{array}\right.$
(5) $2 x^{2}+R x+10$
(5) $(3 x-4)(4 x+5)=12 x^{2}-x-20$
(6) $\left(x^{2}+8\right)\left(x^{3}-3\right)=x^{5}-3 x^{2}+8 x^{3}-24$

Multiplying out double brackets $\quad 1.12 .15$
Write an expression for the area of the large rectangle
(1)

$$
(a+b)(c+d)=a d+a c+b d+b c
$$

(3)

$$
\begin{gathered}
(x+4)(2 x-1) \\
2 x^{2}+8 x-1 x-4 \\
2 x^{2}+7 x-4 \\
\hline
\end{gathered}
$$

Daily Practice
2.12.2015

Q1. Find the value of a car that was worth $£ 15000$ and depreciated by $12 \% \quad 100 \%-12 \%=88 \%=0.88$

Q2. Without a calculator, work out the value of $7 \times 8 \times 10^{3}$ and write your answer in scientific notation

$$
56 \times 1000=56000=\underline{\underline{5.6 \times 10^{4}}}
$$

Q3. Calculate the area of 1 sixth of a circle with a diameter of 20 cm

$$
\begin{aligned}
A=\pi r^{2}=\pi \times 10^{2}=314.159 \ldots & \frac{1}{6} A= \\
\text { Q4. Multiply out and simplify }\left(2 m^{2}+3\right)\left(m^{5}-8\right) & \frac{314.159 \ldots}{6} \\
2 m^{7}-16 m^{2}+3 m^{5}-24 & =52.36 \mathrm{~cm}^{2} \\
& \quad(2 \mathrm{~d} \cdot \mathrm{p})
\end{aligned}
$$

Today we will be continuing to multiply out bracket and learn how to square brackets.

Multiplying out double brackets
Questions: Multiply out and simplify

(i) $(2 c+2)(c-4)$	(vi) $\left(7 m^{8}-2 m\right)\left(9 m^{6}-m\right)$
(ii) $(3 h+5)(h-7)$	(vii) $\left(2 h^{5}-10\right)(6-h)$
(iii) $(5 k-5)(k+4)$	(viii) $(1-x)(x-1)$
(iv) $\left(2 k^{2}+7\right)(9 k-9)$	(ix) $(\sqrt{3}-4)(2 \sqrt{3}+5)$
(v) $\left(m^{5}+m^{3}\right)\left(m^{2}+m\right)$	(x) $(5 \sqrt{2}+\sqrt{3})(3 \sqrt{2}+4)$

Multiplying out double brackets (surds)
Multiplying out double brackets with surds follows the same process. (Will use when rationalising the denominator)

Examples:
(i)

Multiplying out double brackets: Quick Method
To multiply out double brackets, multiply each term in the first
bracket by each term in the second bracket. (Be careful with signs!)

$$
\begin{gathered}
(a+b)(c+d) \\
a(c+d)+b(c+d)
\end{gathered}
$$

Examples:

(b)

(c) $(5 g+7)(g-4)$
$x^{3}-3 x^{2}+4 x-12$
$2 k^{2}+2 k+3 k+3$

$$
\underline{2 k^{2}+5 k+3}
$$

$5 g^{2}-20 g+7 g-28$
$5 g^{2}-13 g-28$

Multiplying out double brackets
Questions: Multiply out and simplify
(i) $(2 c+2)(c-4)$
$2 c^{2}-6 c-8$
(vi) $\left(7 m^{8}-2 m\right)\left(9 m^{6}-m\right) \geq 2 m^{2}$
(ii) $(3 h+5)(h-7)$ $3 h^{2}-16 h-35$
(vii) $\left(2 h^{5}-10\right)(6-h)$
$12 h^{5}-2 h^{6}-60+10 h$
(iii) $(5 k-5)(k+4)$ $5 k^{2}+15 k-20$
(iv) $\left(2 \mathrm{k}^{2}+7\right)(9 \mathrm{k}-9)$ $18 k^{3}-18 k^{2}+63 k-63$
(v) $\begin{aligned} & \left(m^{5}+m^{3}\right)\left(m^{2}+m\right) \\ & m^{7}+m^{6}+m^{5}+m^{4}\end{aligned}$
(viii) $(1-x)(x-1)$
$x-1-x^{2}+k$
$2 x-x^{2}-1$
(ix) $(\sqrt{3}-4)(2 \sqrt{3}+5)$
$2 \sqrt{9}+5 \sqrt{3}-8 \sqrt{3}$
$-3 \sqrt{3}-14$
(x) $(5 \sqrt{2+\sqrt{3}(3) \sqrt{2}}+4)$
$15 \sqrt{4}+20 \sqrt{2}+3 \sqrt{6}+4 \sqrt{3}$
$30+20 \sqrt{2}+3 \sqrt{6}+4 \sqrt{3}$

Multiplying out double brackets (Squaring)
Square the following out and see if you notice a pattern

$$
\begin{array}{llll}
(x-1)^{2} & (x+3)^{2} & (2 x+4)^{2} & (5-x)^{2} \\
(x-1)(x-1) &
\end{array}
$$

Daily Practice
4.12 .15

Q1. Find the value of a house that was worth $£ 84000$ and appreciated by 6% in its first year and 8% in its second. $84000 \times 1.06=f 89040$ $89040 \times 1.08=f 96163.20$
Q2. Multiply out and simplify $(3 x-1)(x+4)$

$$
3 x^{2}+12 x-x-4
$$

Q3. Simplify $2 \sqrt{ } 3-\sqrt{ } 48$

$$
3 x^{2}+11 x-4
$$

$2 \sqrt{3}-\sqrt{16} \sqrt{3}$
$2 \sqrt{3}-4 \sqrt{3}=-2 \sqrt{3}$
Q4. Simplify $\frac{2 m^{2} \times 7 m^{3}}{7 m^{-5}}$

$$
=\frac{14 m^{5}}{7 m^{-5}}=2 m^{10}
$$

Q5. Multiply out and simplify $(3 x-2)^{2}$

$$
\begin{array}{r}
(3 x-2)(3 x-2) \\
9 x^{2}-6 x-6 x+4 \\
9 x^{2}-12 x+4 \\
\hline
\end{array}
$$

Multiplying out double brackets (Squaring)
Square the following out and see if you notice a pattern

$$
\begin{array}{llll}
(x-1)^{2} & (x+3)^{2} & (2 x+4)^{2} & (5-x)^{2} \\
(x-1)(x-1) & x^{2}+6 x+9 & (2 x+4)(2 x+4) & 25-10 x+x^{2} \\
x^{2}-2 x+1 & & 4 x^{2}+16 x+16 &
\end{array}
$$

Today we will be learning how to square out brackets.

Squaring out brackets
Multiply out and simplify the following:
(i) $(2 x-1)^{2}$
(ii) $(3 x-3)^{2}$
$\left.9 x^{2}-18\right) x+9$
(iii) $(7 x-6)^{2}$
(iv) $(-2+3 x)^{2}$
$4 x^{2}-4 x+1$
$49 x^{2}-84 x+36$
$4-12 x+9 x^{2}$
(v) $(2 x-1)^{2}+7 x$
(vi) $(x-8)^{2}+(x+4)^{2}$
$4 x^{2}-4 x+1+7 x$
$x^{2}-16 x+64+x^{2}+8 x+16$
$4 x^{2}+3 x+1$
$2 x^{2}-8 x+80$
$\begin{array}{ll}\text { (vii) } 3(x+6)^{2}+2(x-4)^{2}+5 x^{2}+9 & \text { (viii) } \frac{10(x+3)^{8}}{(x+3)^{6}}\end{array}=10(x+3)^{2}$
$\begin{array}{lll}3\left(x^{2}+12 x+36\right)+2\left(x^{2}-8 x+16\right)+5 x^{2}+5 \\ 3 x^{2}+36 x+108+2 x^{2}-16 x+32+5 x^{2}+9 & & =10\left(x^{2}+6 x+9\right) \\ 10 x^{2}+20 x+149 & & =10 x^{2}+60 x+90\end{array}$

$$
\begin{array}{ll}
\text { 1. }(x+10)^{2} & \text { 2. }(3 x-5)^{2} \\
x^{2}+20 x+100 & 9 x^{2}-30 x+25 \\
\text { 3. }(4-x)^{2} & \\
16-8 x+x^{2} & \text { 4. }(5 x+2)^{2} \\
25 x^{2}+20 x+4
\end{array}
$$

Multiplying out double brackets with trinomials

$(x+3)\left(x^{2}+2 x+5\right)=x^{3}+5 x^{2}+11 x+15$

$5 x^{2}$	$-2 x$	1
$3 x$	$15 x^{3}$	$-6 x^{2}$
	$3 x$	
$20 x^{2}$	$-8 x$	4

$15 x^{3}+14 x^{2}-5 x+4$
$(3 x+4)\left(5 x^{2}-2 x+1\right)$
\qquad

Today we will be continuing to learn how to multiply brackets that have more than 2 terms.
Homework online due 14.12.15

Multiplying out double brackets with trinomials
Multiply each term in the first bracket by every term in the second. (Be careful with signs!)

Examples: Multiply out and simplify

(ii)

$3 m^{3}-24 m^{2}+9 m+7 m^{2}$
$-56 m+21$
$2 k^{3}+5 k^{2}-3 k-4$
$3 m^{3}-17 m^{2}-47 m+21$

Daily Practice \qquad 7.12 .2015

Q1. Calculate the volume of a cylinder with radius 4 cm and height 17 cm

Multiplying out double brackets with trinomials

$(x+5)\left(2 x^{2}+4 x+9\right)$ $2 x^{3}+4 x^{2}+9 x+10 x^{2}+20 x+45$ $2 x^{3}+4 x^{2}+29 x+45$	(b) $(x-3)\left(5 x^{2}+x+6\right)$
(c) $(x-2)\left(6 x^{2}-5 x+7\right)$	(d) $(x+7)\left(3 x^{2}+9 x-2\right)$
(e) $(x-4)\left(5 x^{2}-x-8\right)$	(f) $(x+1)\left(7 x^{2}-2 x+11\right)$
(g) $(2 x+1)\left(3 x^{2}+4 x+1\right)$	(h) $(3 x+4)\left(x^{2}-11 x+2\right)$
(i) $(5 x-2)\left(2 x^{2}+3 x-7\right)$	(j) $(4 x-3)\left(3 x^{2}-5 x-4\right)$
(I) $(k-1)(3 \mathrm{k}+5)^{2}$	(m) $(6 \mathrm{k}-1)\left(2 \mathrm{k}^{2}+3 \mathrm{k}-1\right)-(x+5)$
(n) $(h+1)^{2}-(h+5)^{2}$	

Multiplying out double brackets with trinomial

```
    (a)}\begin{array}{c}{(x+5)(2\mp@subsup{x}{}{2}+4x+9)}\\{2\mp@subsup{x}{}{3}+4\mp@subsup{x}{}{2}+9x+10\mp@subsup{x}{}{2}+20x+45}
        2x}+3+14\mp@subsup{x}{}{2}+29x+4
```



```
    (e) 
    (e)}\begin{array}{c}{(x-4)(5\mp@subsup{x}{}{2}-x-8)}\\{5\mp@subsup{x}{}{2}-\mp@subsup{x}{}{2}-8-20)}\\{5>3-4x+32}\\{5>2-4}
(g) }\begin{array}{l}{(2x+1)(3\mp@subsup{x}{}{2}+4x+1)}\\{6\mp@subsup{x}{}{3}+8\mp@subsup{x}{}{2}+2x+3x+4x+1}
    6x+8}+8\mp@subsup{x}{}{2}+12x+3x+6x+
(i) }10\begin{array}{c}{(5x-2)(2\mp@subsup{x}{}{2}+3x-7)}\\{10}
        10\mp@subsup{x}{}{2}+11\mp@subsup{x}{}{2}-41x+14
            (b) }\begin{array}{l}{(x-3)(5\mp@subsup{x}{}{2}+x+6)}\\{5\mp@subsup{x}{}{3}+\mp@subsup{x}{}{2}+6x-5x}
        5\mp@subsup{x}{}{3}+\mp@subsup{x}{}{2}+6x-75\mp@subsup{x}{}{2}-3x
            (d) (x+7)(3\mp@subsup{x}{}{2}+9x-2)=2
            (d) }\begin{array}{l}{(x+7)(3\mp@subsup{x}{}{2}+9x-2)}\\{3\mp@subsup{x}{}{2}+9\mp@subsup{x}{}{2}-2x+24}
            3x+
            l
                                l
                                (3x+4)(\mp@subsup{x}{}{2}-11x+2)}33+4\mp@subsup{x}{}{2}+4\mp@subsup{x}{}{2}-44x+
                                (3x+4)(\mp@subsup{x}{}{2}-11x+2)
                (4x-3)(3\mp@subsup{x}{}{2}-5x-4)}9\mp@subsup{x}{}{2}+15x+1
                        12x-29x-x+12
```

DAILY PRACTICE 8.12.2015

Q1. Multiply out and simplify $(x-4)^{2}$

$$
(x-4)(x-4)
$$

$$
\begin{aligned}
& (x-4)(x-4) \\
& x^{2}-4 x-4 x+16=x^{2}-8 x+16
\end{aligned}
$$

Q2. Find the value of a house that was worth $£ 140000$ and appreciated by 1.5% per annum for 5 years. $100 \%+1.5 \%=101.5 \%$

$$
140000 \times 1.015^{s}=f 150819.76
$$

Q3. State the median and interquartile range of $2,4,7,11,9,-2,1,15$

$$
\begin{array}{ll}
\quad \text { Interquartile range }=Q_{3}-Q_{1} \\
10-1.5=8.5 & -2,1,2,4,7,9,11,15 \\
\text { Q4. Simplify } \sqrt{200} & \text { median }=Q_{2}=\frac{4+7}{2}=5.5 \\
=\sqrt{100} \sqrt{2}=10 \sqrt{2} & Q_{1}=\frac{1+2}{2}=1.5 \quad Q_{3}=\frac{9+11}{2}=10
\end{array}
$$

$$
\frac{1}{16^{\frac{3}{4}}}=\frac{1}{\sqrt[4]{16}^{3}}=\frac{1}{2^{3}}=\frac{1}{8}
$$

Today we will be working out how to rationalise the denominator for more difficult questions.
Homework Online due 14.12.15
(h) $(h+1)^{2}-(h+5)^{2}$
$h^{2}+2 h+1-\left(h^{2}+10 h+25\right)$
$h^{2}+2 h+1-h^{2}-10 h-25$
-8h-24

Surds: Rationalising the denominator
Revisiting surds...

What happens when you want to rationalise the denominator when you have a fraction of the form below?

$$
\begin{aligned}
& \frac{3}{1+\sqrt{2}} \times 1-\sqrt{2} \times \frac{3(1-\sqrt{2})}{(1+\sqrt{2})(1-\sqrt{2})} \\
= & \frac{3-3 \sqrt{2}}{1-\sqrt{2}+\sqrt{2}-2}=\frac{3-3 \sqrt{2}}{-1}=-3+3 \sqrt{2}
\end{aligned}
$$

Surds: Rationalising the denominator
To rationalise the denominator of a fraction with surds where the fraction is of the form

$$
\frac{a}{b \pm \sqrt{t}}
$$

Multiply both numerator and denominator by the conjugate of the denominator(the denominator with the middle sign changed).

Surds: Rationalising the denominator using the conjugate
Examples: Write the following with a rational denominator

$$
\begin{array}{rlrl}
\text { 1. } & \frac{2}{3+\sqrt{5}} \times 3-\sqrt{5} & \text { 2. } & \frac{1+\sqrt{3}}{4-\sqrt{5}} \times(4+\sqrt{2}) \\
= & \frac{2(4-\sqrt{2})}{(3+\sqrt{5})(3-\sqrt{5})} & = & \frac{(1+\sqrt{3})(4+\sqrt{2})}{(4-\sqrt{2})(4+\sqrt{2})} \\
= & \frac{6-2 \sqrt{5}}{9-3 \sqrt{5}+3 \sqrt{5}-5} \\
= & \frac{6-2 \sqrt{5}}{4} \div 2=\frac{3-\sqrt{5}}{2}= & =\frac{4+\sqrt{2}+4 \sqrt{3}+\sqrt{6}}{16+4 \sqrt{2}-4 \sqrt{2}-2} \\
= & =\frac{4+\sqrt{2}+4 \sqrt{3}+\sqrt{6}}{14}
\end{array}
$$

Q1. Multiply out and simplify $(x-4)\left(2 x^{2}+7 x-8\right)$ $2 x^{3}+7 x^{2}-8 x-8 x^{2}-28 x+32$ $2 x^{3}-x^{2}-36 x+32$
Q2. Write with a rational denominator $\frac{2}{\sqrt{3} \times \sqrt{3}} \times \frac{2 \sqrt{3}}{3}$
Q3. Evaluate $144^{\frac{3}{2}}$
$\sqrt[2]{144}^{3}=1728$
Q4. Simplify $k^{\frac{3}{2}}\left(k^{\frac{1}{2}}+k^{\frac{1}{2}}\right)$

$$
k^{2}+k^{\frac{7}{2}}
$$

Q5. $\frac{7 x+3}{2}=12$
$\begin{array}{rc}\times 2 & \times 2 \\ 7 x+3 & =24 \\ -3 & -3\end{array}$
$7 x=21$
$x=3$

Surds: Rationalising the denominator using the conjugate

Rationalise the denominator, in each fraction, using the appropriate conjugate surd.
(a) $\frac{1}{\sqrt{2}-1}$
(b) $\frac{1}{\sqrt{5}+1}$
(c) $\frac{12}{2-\sqrt{3}}$
(d) $\frac{1}{1-\sqrt{2}}$
(e) $\frac{1}{1+\sqrt{3}}$
(f) $\frac{3}{\sqrt{5}-1}$
(g) $\frac{2}{\sqrt{2}+2}$
(h) $\frac{3}{2-\sqrt{6}}$
(i) $\frac{5}{3+\sqrt{2}}$
(j) $\frac{4}{1+\sqrt{3}}$
(k) $\frac{1}{\sqrt{7}-2}$
(l) $\frac{1}{\sqrt{3}-\sqrt{2}}$
(m) $\frac{6}{\sqrt{3}+\sqrt{2}}$
(n) $\frac{12}{\sqrt{10}-\sqrt{2}}$
(o) $\frac{3}{\sqrt{5}+\sqrt{6}}$
(p) $\frac{14}{9-\sqrt{2}}$

Solutions:

(a) $\sqrt{2+1}$
(b) $\frac{\sqrt{5}-1}{4}$
(c) $\quad+12(2+\sqrt{3})$ (d)
$-(1+\sqrt{2})$
(e) $-\frac{1}{2}(1-\sqrt{3}) \quad$ (f) $\frac{3(\sqrt{5}+1)}{4}$
(g) $\quad-(\sqrt{2}-2)$
(h) $\quad-\frac{3}{2}(2+\sqrt{6})$
(i) $\frac{5(3-\sqrt{2})}{7} \quad$ (j) $\quad-2(1+\sqrt{3})$
(k) $\frac{\sqrt{7}+2}{3}$
(l) $\sqrt{3}+\sqrt{2}$
(m) $6(\sqrt{3}-\sqrt{2}) \quad$ (n) $\quad \frac{3}{2}(\sqrt{10}+\sqrt{2})(0) \quad-3(\sqrt{5}-\sqrt{6}) \quad$ (p) $\frac{14(9+\sqrt{2})}{79}$

Q1. Multiply out and simplify $(x-2)^{2}+3 x$

$$
x^{2}-4 x+4+3 x
$$

Q2. Write with a rational denominator $\frac{x^{2}-x+4}{2+\sqrt{3}} \times 2-\sqrt{3}=\frac{6-3 \sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})}$

$$
=\frac{6-3 \sqrt{3}}{4-3}=6-3 \sqrt{3}
$$

$$
\begin{aligned}
& \text { Q3. Calculate the height of the triangle } \\
& \qquad \sin x=\frac{0}{h} \quad \sin 26^{\circ}=\frac{h}{14} \quad \mathrm{hcm} \\
& \text { Q4. Solve } \frac{3 x+2}{2}-\frac{x}{2}=7 \quad 14 \sin 26^{\circ}=h
\end{aligned}
$$

$$
\begin{gathered}
\text { Q4. Solve } \left.\begin{array}{c}
\frac{3 x+2}{2}-\frac{x}{2}=7 \quad 14 \sin 26^{\circ}=h \\
x^{2} \quad \xrightarrow{h}=6 \cdot 14 \mathrm{~cm}(2 \mathrm{~d} . \mathrm{p})
\end{array}\right) .
\end{gathered}
$$

$3 x+2-x=14$
$2 x+2=14$
$2 x=12$
$x=6$

Today we will be learning how to work out some trickier questions on surds and indices.
Homework due Monday.
(a) $\frac{1}{\sqrt{x}}\left(x^{2}-x^{-\frac{1}{2}}\right)$

Today we will be complefing a freasure hun on indices.

Homework Due.
(5) $\frac{6}{x^{-2}}=6 x^{2}$
(6) $2 x^{-3}=2 \times \frac{1}{x^{3}}=\frac{2}{x^{3}}$
(2) $2 x^{\frac{1}{2}}=2 \sqrt{x}$
(7) $8 x^{-\frac{1}{2}}=8 \times \frac{1}{x^{2}}=\frac{8}{\sqrt{x}}$
(3) $x^{-\frac{1}{2}}=\frac{1}{x^{\frac{1}{2}}}=\frac{1}{\sqrt{x}}$
(8) $2 \sqrt[5]{x^{2}}=2 x^{\frac{2}{5}}$
(9) $\frac{3}{\sqrt[4]{x^{5}}}=\frac{3}{x^{\frac{5}{4}}}$

$$
\frac{p^{7}}{p^{-2}} \quad p^{9}
$$

$$
\frac{2 p \times 6 p^{2}}{3 p} \quad 4 p^{2}
$$

$\left(5 p^{2}\right)^{3}$
$125 p^{6}$
$\sqrt[3]{p^{2}}$
$p^{\frac{2}{3}}$
$\left(2 p^{2} \times 3 p\right)^{2}$
$36 p^{6}$
$\sqrt{p^{3}}$
$p^{\frac{3}{2}}$

$$
\begin{array}{llll}
\frac{4 p^{2} \times 6 p}{3 p^{7}} & \frac{8}{p^{4}} & \frac{p^{14}}{p^{2}} & p^{12} \\
p^{2}\left(p^{-4}+2 p^{3}\right) & p^{-2}+2 p^{5} & p^{4} \times p^{3} & p^{7}
\end{array}
$$

$$
\frac{5 p^{-1} \times p^{3}}{2 p^{-5}}
$$

$$
2.5 p^{7}
$$

$$
p^{-\frac{2}{3}}
$$

$$
\frac{1}{\sqrt[3]{p^{2}}}
$$

$$
2 p^{-3} \quad \frac{2}{p^{3}}
$$

$\frac{4}{p^{2}}$

$$
\begin{array}{ll}
\sqrt{p}\left(p+2 p^{\frac{1}{2}}\right) & p^{\frac{3}{2}}+2 p \\
\frac{1}{\sqrt{p}}\left(p+2 p^{\frac{1}{2}}\right) & p^{\frac{1}{2}}+2
\end{array}
$$

Mixed Surds \& Indices - Tricky Questions
(b) $\left(\frac{1}{\sqrt{x}}+x\right)^{2}$

Simplify each of the following by (i) changing root signs to fractional powers;
(ii) moving x^{\prime} s onto the numerators;
(iii) expanding brackets where necessary
(a) $x^{\frac{1}{2}}\left(x^{4}+1\right)$
(b) $x^{\frac{1}{2}}\left(x^{\frac{3}{2}}-x^{2}\right)$
(c) $\frac{1}{x^{2}}\left(x^{\frac{1}{2}}+x\right)$
(d) $\frac{2}{x^{-3}}\left(x^{2}+\frac{1}{x}\right)$
(e) $\frac{1}{\sqrt{x}}\left(x^{2}-\sqrt{x}\right)$
(f) $\left(x^{2}+\frac{1}{x}\right)^{2}$
(g) $\frac{1}{x}(\sqrt{x}+x)$
(h) $\left(x+\frac{1}{\sqrt{x}}\right)^{2}$
(i) $x^{-2}\left(\frac{1}{x}-\sqrt[3]{x}\right)$
(j) $\frac{x^{2}+3}{x}$
(k) $\frac{\sqrt{x}-x}{x^{2}}$
(l) $\frac{(2 x+1)^{2}}{x^{\frac{3}{2}}}$
14. (a) $x^{\frac{9}{2}}+x^{\frac{1}{2}}$
(b) $x-x^{\frac{3}{2}}$
(c) $x^{-\frac{3}{2}}+x^{-1}$
(d) $2 x^{5}+2 x^{2}$
(e) $x^{\frac{3}{2}}-1$
(f) $x^{4}+2 x+\frac{1}{x^{2}}$
(g) $x^{-\frac{1}{2}}+1$
(h) $x^{2}+2 x^{\frac{1}{2}}+x^{-1}$
(i) $x^{-3}-x^{-\frac{5}{3}}$
(j) $x+3 x^{-1}$
(k) $x^{-\frac{3}{2}}-x^{-1}$
(l) $4 x^{\frac{1}{2}}+4 x^{-\frac{1}{2}}+x^{-\frac{3}{2}}$

Daily Practice
15.12.2015

Q1. Solve the equation $\frac{3 x+5}{2}-1=x+6$

$3 x+3=2 x+12 \quad x=9$
$x+3=12$
Q2. Simplify $2 k\left(k^{-1}+5 k^{\frac{1}{2}}\right)$

$2+10 k^{\frac{3}{2}}$

Q3. Calculate the height of the triangle $\operatorname{Tan} x=\frac{0}{a} \quad \tan 35^{\circ}=\frac{x}{10}$
$10 \times \operatorname{ton} 35^{\circ}=x \quad x=7 \mathrm{~cm}$

Q4. Write with a fractional index $\sqrt[4]{x^{3}}$

$$
x^{\frac{3}{4}}
$$

Today we will be practising how to factorise and going through the homework.
(2)A garden measuring $6 y+5$ metres by $2 y-3$ metres has two square flower beds of side y metres. The rest is grass.

$$
\left.\begin{array}{l}
\text { (a) Write an expression for the total area of the garden. } \\
(6 y+5)(2 y-3) \\
\text { (b) Write an expression for the area of the grass. } \\
(6 y+5)(2 y-3)-2 y^{2} \\
12 y^{2}-8 y-15
\end{array}\right] \begin{aligned}
& \text { (c) If } y=2 \text { and lawn food costs f1.50 per square metre what is the cost } \\
& \text { of the lawn food needed to feed all of the grass? } \\
& 12 y^{2}-8 y-15-2 y^{2} \\
& 10 y^{2}-8 y-15 \\
& 10(2)^{2}-8(2)-15 \quad \sqrt{\text { sub. } 2 \text { into expression }} \\
& 40-16-15=9 \text { Sq. metres } x \\
& 81.50=f 13.50
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q1. Expand the brackets and simplify the following expressions } \\
& \begin{array}{llll}
\text { (a) }(r-3)(r+10) & \text { (b) }(3 w-2)(3 w-2)^{2} & \text { (c) }(7 a-2)(a+5) \\
r^{2}+10 r-3 r-30 & 9 w^{2}-6 w-6 w+4 & 7 a^{2}+35 a-2 a-10 \\
r^{2}+7 r-30 & 9 w^{2}-12 w+4 & 7 a^{2}+33 a-10
\end{array}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { (f) }(x+1)\left(4 x^{2}+6 x-1\right) & \text { (g) }(2 a-3)\left(3 a^{2}-7 a+4\right)
\end{array}
$$

$$
4 x^{3}+6 x^{2}-x+4 x^{2}+6 x-1 \quad 6 a^{3}-14 a^{2}+8 a-9 a^{2}+21 a-12
$$

$$
4 x^{3}+10 x^{2}+5 x-1 \quad 6 a^{3}-23 a^{2}+29 a-12
$$ 16.12.2015

Q1. Write with a fractional index $\sqrt[3]{x^{4}}$
$x^{\frac{4}{3}}$
Q2. Find the value of a house that was worth $£ 88000$ and appreciated by 4% per annum for 7 years
$100 \%+4 \%=104 \%=1.04$

$$
88000 \times 1.04^{7}=f 115802
$$

Q3. Multiply out and simplify $(2 k-3)(k+4)$
$2 k^{2}+8 k-3 k-12$
Q4. Simplify $\sqrt{24}+\sqrt{72} \quad 2 k^{2}+5 k-12$

$$
\begin{gathered}
\sqrt{8} \sqrt{3}+\sqrt{8} \sqrt{9} \\
2 \sqrt{3} \sqrt{3}+2 \sqrt{2} \times 3 \\
2 \sqrt{6}+6 \sqrt{2} \\
\hline
\end{gathered}
$$

Factorising
The opposite of multiplying out is known as factorising.
There are three types of factorising:

1. Common Factor
2. Difference of 2 squares
3. Factorising trinomials.

look for a

```
Factorising - Difference of 2 squares
    Multiply out and simplify the following:
    1. \((x-3)(x+3)\)
        \(x^{2}-9\)
    2. \((2 x+1)(2 x-1)\)
        \(4 x^{2}-1\)
3. \((7 h+4)(7 h-4)\)
    \(49 h^{2}-16\)
4. \(25(1-2 x)(1+2 x) \rightarrow 2\left(1+2 x-2 x-4 x^{2}\right)\)
    \(25-100 x^{2} \quad 25\left(1-4 x^{2}\right)\)
```


Factorising - Common Factor

Take out the HCF (both numerical and algebraic)

$$
\begin{aligned}
& \text { Examples: Factorise } \\
& \begin{array}{l}
\text { 1. } 12 a h-18 h^{2} \\
=6 h(2 a-3 h)
\end{array} \quad 2.30 a b-20 b^{2}+10 b c \\
& =10 b(3 a-2 b-c)
\end{aligned}
$$

15 Questions Mental Maths

Factorising - Difference of 2 squares

What pattern do you notice?

```
Factorising - Difference of 2 squares
* First, always look for a common factor.
        To identify a difference of 2 squares, it will be 2 terms that are
        squares and there is a minus inbetween. Be familiar with your
    sqqure numbers.
    Examples: Factorise the following
    (a) }\mp@subsup{x}{}{2}-\mp@subsup{y}{}{2
    (b) }81-\mp@subsup{m}{}{2
    (x+y)(x-y) (9+m)}99-m
    (c) 9\mp@subsup{x}{}{2}-100y2
    (3x+10y)(3x-10y)
    (d) 50-32m
    (e) Evaluate 1.752 - 1.25
        pg. 154
        (1.75+1.25)(1.75-1.25)
        Q1 2 Nd}\mathrm{ Column
        Q2 middle column (3)(0.5)
        Q3+4
            =1.5
```

Working backwards. What do we get when we factorise

$$
a^{2}-b^{2} ?
$$

$$
\begin{gathered}
(a+b)(a-b) \\
a^{2}-a b+a b-b^{2} \\
a^{2}-b^{2}
\end{gathered}
$$

Factorising Trinomials $8 \cdot 1 \cdot 16$

A trinomial is an algebraic expression that is of the form

$$
a x^{2}+b x+c
$$

When we factorise it, we are thinking, 'what pair of brackets multiplies out and simplifies to get this answer?'

The answer will be a pair of double brackets. Always look for a common factor first! We can use the rectangle to help us.

Remember?

$$
(x+6)(x+4)
$$

x	6
x	x^{2}
$4 x$	$6 x$

Factorising Trinomials with a unitary x^{2} coefficient

Examples:

2.

		Factorise $x^{2}-11 x+24$	
x	-8		
	x^{2}	$-8 x$	
	$-3 x$	24	

$(x-8)(x-3)$

Factorising Trinomials with a unitary x^{2} coefficient

Questions: Factorise the following

$$
\text { (1) } x^{2}+12 x+35
$$

(7) $x^{2}+15 x+56$
(2) $x^{2}+5 x+4$
(8) $x^{2}-8 x-20$
(2) $x^{2}-14 x+40$
(9) $x^{2}-13 x-48$
(4) $x^{2}-6 x+5$
(ID) $x^{2}-9 x-22$
(5) $x^{2}-7 x-30$
(b) $x^{2}-11 x+28$
(II) $2 x^{2}+20 x+42=2\left(x^{2}+10 x+2\right)$
(IV) $3 x^{2}-24 x+36$
(B) $5 x^{2}-20 x-25$

Factorising Trinomial with a unitary x^{2} coefficient
Examples:

1. Factorise $x^{2}+5 x+6$

$(\underline{(x+2)(x+3)}$

Factorising Trinomials with a unitary x^{2} coefficient

Examples:

3.

Factorise $x^{2}-7 x-44$

$\underline{(x-11)(x+4)}$

Q1. Find 19% of 2100
$10 \% \Rightarrow 210$
$1 \% \quad 21 \quad 399$
9%
2. Calculate the height of a cylinder with a radius of 4 cm and a
volume of $603.19 \mathrm{~cm}^{3} \quad \begin{aligned} & \pi r^{2} h=603.19 \\ \pi \times 16 \times h=603.19 \quad & h=\frac{603.19}{16 \pi}\end{aligned}$
QB. $2 \frac{1}{3}-\frac{3}{5}=\frac{7}{3}-\frac{3}{5}=\frac{35}{15}-\frac{9}{15}=\frac{26}{15}=\frac{11}{15} \quad h=12 \mathrm{~cm}$
Q4. Multiply out and simplify $(x-3)(x+4)$
Q5. Solve
$\begin{aligned} \frac{3 x+9}{4} & =3 \\ 3 x+9 & =12 \\ -9 & =9 \\ 3 x & =3 \\ x & =1\end{aligned}$
$x^{2}+4 x-3 x-12$ $\underline{\underline{x^{2}+x-12}}$

Today we will be continuing to learn how to factorise trinomials.
 Homework Online due 18.1.16

Factorising Trinomials with a non-unitary x^{2} coefficient
Examples:
1.

Factorise $10 x^{2}-x-3$

\[

\]

Factorising Trinomials with a non-unitary x^{2} coefficient
Examples:
3. Factorise $4 x^{2}+21 x-18$

Daily Practice 12.1.2016
QI. Calculate the median and quartiles of $2,3,7,1,8,11,4$

$$
\begin{aligned}
& \text { culate the median and quartiles of } 2,3,7,1,8,11,4 \\
& Q_{2}=4 \quad O_{1}=2 \quad Q_{3}=8 \quad 1,2,3,7,811
\end{aligned}
$$

Q2. Calculate the value of a house that cost $£ 320000$ and appreciated by 4.2% per annum for 3 years

$$
320000 \times 1.042^{3}=f 362037.15
$$

Q3. Multiply out and simplify $(3 x-1)\left(2 x^{2}+6 x-1\right)$
$6 x^{3}+16 x^{2}-9 x+1 \quad 6 x^{3}+18 x^{2}-3 x-2 x^{2}-6 x+1$
QU. $x^{3}+16 x^{2}-9 x+1$
$(x+6)(x-6)$

$$
\text { Q5. } \begin{aligned}
2 \frac{1}{3} \div \frac{4}{5} & =\frac{7}{3} \div \frac{4}{5}=\frac{7}{3} \times \frac{5}{4} \\
& =\frac{35}{12}=2 \frac{11}{12}
\end{aligned}
$$

Today we will be continuing to practise factorising trinomial.
(a) $3 x^{2}+7 x+2$
(b) $2 a^{2}-5 a+3$
(c) $4 p^{2}-p-3$
(d) $2 p^{2}+11 p+9$
(e) $6 x^{2}-7 x+2$
(f) $3 w^{2}+10 w-8$
(g) $5 q^{2}+9 q+4$
(h) $4 m^{2}-9 m+2$
(i) $6 b^{2}+7 b-20$
(j) $3 a^{2}+14 a+15$
(k) $3 p^{2}-37 p+12$
(l) $4 d^{2}-4 d-15$
(m) $6 y^{2}+11 y+3$
(i) $24 c^{2}-22 c+3$
(o) $36 v^{2}+v-2$
(r) $12 m^{2}-31 m+7$
(u) $9 c^{2}+18 c+8$

(a)	$(3 x+1)(x+2)$	(b)	$(2 a-3)(a-1)$	(c)	$(4 p+3)(p-1)$
(d)	$(2 p+9)(p+1)$	(e)	$(3 x-2)(2 x-1)$	(f)	$(3 w-2)(w+4)$
(g)	$(5 q+4)(q+1)$	(l)	$(4 m-1)(m-2)$	(i)	$(2 b+5)(3 b-4)$
(j)	$(3 a+5)(a+3)$	(k)	$(3 p-1)(p-12)$	(l)	$(2 d+3)(2 d-5)$
(m)	$(3 y+1)(2 y+3)$	(i)	$(6 c-1)(4 c-3)$	(o)	$(4 v+1)(9 v-2)$
				(r)	$(3 m-7)(4 m-1)$
		(u)	$(3 c+4)(3 c+2)$		
			(x)	$(4 b+5)(2 b-3)$	

Pegasys

Daily Practice

\qquad 13.1.2016

Q1. Calculate the value of a painting worth $£ 4500$ that appreciated by 12.5% in year 1 and depreciated by 4.8% in year 2. $\quad 100 \%+12 \cdot 5 \%=112 \cdot 9 \%$

$$
4900 \times 1.125=£ 5062.5
$$

$$
\begin{aligned}
& 5062.5 x-9.952=£ 4819.50 \\
& \hline
\end{aligned}
$$

Q2. Factorise $\begin{aligned} & 5 x^{2}-2 x-3 \\ & 5 x+3)(x-1)\end{aligned}$

$$
100 \%-4.8 \%
$$ $100 \%-4.8 \%$ $=95.2 \%$ $=0.951$

Q3. Solve $\begin{array}{rlrl}\frac{5 x+3}{3^{3}}=x+5 & \times 3 & 5 x+3 & =3 x+15 \\ 2 x & =12\end{array}$
Q4. Write in scientific notation $0.0008976 \quad x=6$

$$
8.976 \times 10^{-4}
$$

Q5. $2 \frac{3}{5}-\frac{4}{7}$
$=\frac{13}{5}-\frac{4}{7}=\frac{91}{35}-\frac{20}{35}=\frac{71}{35}=2 \frac{1}{35}$

$$
\begin{aligned}
& \text { Daily Practice } \\
& \text { Q1. Simplify } \frac{a^{2} \times 7 a^{5}}{a^{3}}=\frac{7 a^{7}}{a^{3}}=7 a^{4} \\
& \text { Q2. Multiply out and simplify }(x-4)\left(1-3 x+2 x^{2}\right) \\
& x-3 x^{2}+2 x^{3}-4+12 x-4 x^{2} \\
& \quad 2 x^{3}-11 x^{2}+13 x-4
\end{aligned}
$$ 15.1.2016

$$
(7-6)(7+c)
$$

Q4. If two bottles are similar in shape. The height of the smaller bottle is 4 cm , the height of the larger bottle is 6 cm . Calculate the
volume of the larger bottle if the volume of the smaller bottle is 600 ml

$$
\begin{aligned}
& \text { s.f }=6 \div 4=1.5 \\
& \text { V.s.f. }=\left(\frac{3}{2}\right)^{3} \\
& \text { Volume larger bottle } \left.=600 \times\left(\frac{3}{2}\right)^{3}=2025 \mathrm{~m}\right)
\end{aligned}
$$

Today we will be completing mixed questions on factorisation. Homework due Monday!

Always look for a common factor first.
Look out for difference of two squares i.e. $a^{2}-b^{2}$
Trinomials will always be of the form $a x^{2}+b x+c$
Some may look like a trinomial but you may only be able to get common factor and go no further.

Daily Practice

18.1.16

Today we will be completing a check-up on multiplying out and factorising.

Q1. Factorise each of the following fully using common factors

Q2. Factorise each of the following differences of squares :

(c) $25 p^{2}-4 q^{2}$
(4)
(c) $w^{2}-w-6$ $(\omega-3)(\omega+2)$
(4) $\mathrm{m}^{2}+\mathrm{m}-12$

$$
\left(m+\frac{m^{2}+m-12}{(m+4)}(m-3)\right.
$$

(4)

$$
\begin{aligned}
& (9)\left(-h-2 h^{2}\right. \\
& (1-2 h \lambda 1+h) \quad(3 a-2)(3 a+4) \\
& (-2 h+1)(h+1)
\end{aligned}
$$

(4)
(4)
(e) $2 \mathrm{k}^{2}+3 \mathrm{k}+1$
$(2 k+7(k+1)$
(f) $24 x^{2}+2 x-1$ $(6 x-1)(4 x+1)$

$$
\begin{array}{cc}
(a) r^{2}+6 r+8 \\
(r+4)(r+2) & (b) s^{2}-4 a+4 \\
(s-2)(s-2) \\
(s-2)^{2}
\end{array}
$$

(4)

