Q1. Calculate the area of PQR

2 marks

A line passes through $(-2,3)$ and $(3,-5)$. State the equation of the line.

3 marks line with equation $3 x-y+2=0$.

$$
\begin{gathered}
\text { paraleal lines } \Rightarrow \text { equal gradients } \\
\begin{array}{c}
3 x-y+2=0 \\
y=3 x+2 \\
m=3 \\
y-b=m(x-a) \\
y-4=3(x+1) \\
y-4=3 x+3 \\
3 x-y+7=0
\end{array}
\end{gathered}
$$

3 marks

Q5. Calculate the area of the rectangle, give your answer as a surd in its simplest form.

A function f is given by $f(x)=2 x^{2}-x-9$.
Which of the following describes the nature of the roots of $f(x)=0$?
A No real roots
$b^{2}-4 a c$
B Equal roots
C Real distinct roots
D Rational distinct roots

$$
\begin{gathered}
a=2 b=-1 \quad c=-9 \\
(-1)^{2}-4(2)(-9) \\
1+72 \\
=73>0
\end{gathered}
$$

\Rightarrow Real roots distinct

Q7.

Calculate the height of the cylinder. $V=L \times B \times H$
$V=25 \times 25 \times 25$ $V=15625 \mathrm{~cm}^{3}$

In the diagram below the volume of the cylinder is double that of the cube

$\quad V=15625 \times 2=31250 \mathrm{~cm}^{3}$
$3 / 250=\pi \times 20^{2} \times h$
$31250 \div\left(\pi \times 20^{2}\right)=h$
$h=24.87 \mathrm{~cm}$

4 marks

Q9.
Calculate the area of the triangle, give your answer as a surd in its simplest form.

$$
\begin{aligned}
& A=\frac{1}{2}(L \times B) \\
& A=\frac{1}{2}(\sqrt{6} \times \sqrt{8}) \\
& A=\frac{1}{2}(\sqrt{48}) \sqrt{2} \\
& A=\frac{1}{2}(\sqrt{16} \sqrt{3}) \\
& A=\frac{4 \sqrt{3}}{2}=2 \sqrt{3}
\end{aligned}
$$

Here are two statements about the roots of the equation $x^{2}+x+1=0$:
(1) the roots are equal
(2) the roots are real.
Which of the following is true?
A Neither statement is correct.
B Only statement (1) is correct
C Only statement (2) is correct.
D Both statements are correct. $b^{2}-4 a c$ $a=1 \quad b=1 \quad c=1$ $1^{2}-4(1)(1) \checkmark$
$1-4=-3<0$

3 marks
3 marks

Q11.
The stem and leaf diagram shows the cost of cars in a show room.

10| 4 represents $£ 10400$
(a) Find the range of the cost
(b) Medicn $=\frac{12000+12100}{2}=\frac{f 12050}{}$

Find the range of values of k such that the equation $k x^{2}-x-1=0$ has no real
roots.
roots.

3 marks

In the diagram RSTU, VWXY represents a cuboid.
$\overrightarrow{\mathrm{SR}}$ represents vector $f, \overrightarrow{\mathrm{ST}}$ represents vector g and $\overrightarrow{\mathrm{SW}}$ represents vector h.
Express $\overrightarrow{\mathrm{VT}}$ in terms of f, g and \boldsymbol{h}.

Q13.
he number goals scored by 20 football teams on Saturday were

(a) What is the modal number of goals scored? I (mosh common)
(b) Find the median. ।

2 marks

Q15. Calculate the total volume

$$
\begin{gathered}
V=\pi r^{2} h+\frac{1}{3} \pi r^{2} h \\
V=\left(\pi \times 12^{2} \times 15\right)+\left(\frac{1}{3} \times \pi \times 12^{2} \times 18\right) \\
V=6785.84 \pm 3714.34 \\
V=9500.18 \mathrm{~cm}^{3}
\end{gathered}
$$

5 marks

The equation $3 x^{2}+x+m=0$ has equal roots. What is the value of m ?

$$
\begin{aligned}
& b^{2}-4 a c=0 \\
& a=3 \quad b=1 \quad c=m
\end{aligned}
$$

$$
\begin{gathered}
(1)^{2}-4(3)(m)=0 \\
1-12 m=0 \\
1=12 m \\
m=\frac{1}{12}
\end{gathered}
$$

3 marks
$7-8 x-x^{2}$ is expressed in the form $a-(x+b)^{2}$. What is the value of a ?

$$
\begin{aligned}
& -1\left[x^{2}+8 x-7\right] \\
& =-1\left[(x+4)^{2}-16-7\right] \\
& =-1\left[(x+4)^{2}-23\right] \\
& =-(x+4)^{2}-23 \\
& a=-23
\end{aligned}
$$

Here are two statements about the roots of equation
$x^{2}-x-2=0$
(1) The roots are rational
(2) The roots are real

$$
\begin{gathered}
b^{2}-4 a c \backslash \\
c=16=-1 \quad c=-2 \\
(-1)^{2}-4(1)(-2) \\
1+8=9>0 \\
\text { Perfect square }
\end{gathered}
$$

Which of the following is true?
A Neither statement is correct.
B Only statement 1 is correct
C Only statement 2 is correct.
(D) Both statments are correct.

3 marks

Q19.

The cost of a holiday increased by 8% from the years 2001 to 2002 . If it cost $£ 540$ for the holiday in 2002, what was the cost in 2001?

$$
\begin{aligned}
& 6540=108 \% \\
& 1 \%=540 \div 108=5 \\
& 100 \%=5 \times 100=E 500
\end{aligned}
$$

3 marks

Q21. Find the value of

$$
25^{\frac{3}{2}}=(\sqrt{25})^{3}=5^{3}=125
$$

The marks of 7 pupils in an advanced higher maths exam were
Q23.

$$
\begin{array}{lllllll}
77 & 67 & 43 & 90 & 66 & 93 & 75
\end{array}
$$

Calculate the mean and standard deviation of these marks.
Another group of 7 pupils who sat the same exam had a mean of 78 and a standard deviation of 3.2.
Make two comparisons of the marks of the two groups.

$$
\bar{x}=511 \div 7=73 \int \begin{array}{c|c|cc}
x & x-\bar{x} & (x-\bar{x})^{2} \\
\hline 77 & 4 & 16 & s=\sqrt{\frac{2(x-\bar{x})^{2}}{n-1}} \\
67 & -6 & 36 & s=\sqrt{\frac{1694}{7-1}} \\
43 & -30 & 900 & \\
90 & 17 & 289 & \\
66 & -7 & 49 & s=\sqrt{282.33} \\
93 & 20 & 400 & \\
75 & 2 & 4 & s=16-8
\end{array}
$$

The other grape of student on average performed better (highermeon) and got mare consistent results (le weer stadod deviation). $4+2$ marks

A line through the points $A(2 k, 3)$ and $B(k, 5)$ has a gradient of 4 . What is the value of k ?

$$
\begin{aligned}
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-3}{k-2 k} & =4 \\
\frac{2}{-1 k} & =4 \\
x-k & =-4 k \\
2 & =-\frac{1}{2}
\end{aligned}
$$

3 marks

$$
\begin{aligned}
& (x+4)(x-2) \text { can be written in the form }(x+a)^{2}+b \text {. What is the } \\
& \text { value of } b \text { ? } \\
& x^{2}-2 x+4 x-8 \\
& x^{2}+2 x-8 \\
& (x+1)^{2}-1-8 \\
& (x+1)^{2}-9 \\
& b=-9
\end{aligned}
$$

Q25.

The large Magellanic cloud is 1.69×10^{18} kilometres from Earth. Write this distance as an ordinary number

1690000000000000000

1 mark

Q26. Solve

$$
\begin{aligned}
& \frac{\mathrm{X}(\mathrm{X}+5)}{4}=9 \quad \begin{array}{l}
\frac{x^{2}+5 x}{4}=9 \\
\times 4 \\
x^{2}+5 x=36 \\
x^{2}+5 x-36=0 \\
\\
\\
x-4 x+9 \\
x=4 \text { or } x=-9
\end{array}
\end{aligned}
$$

4 marks

Q27. Write the vector AC in terms of A and B

Q28.
$\left(t^{4}\right)^{3}+\sqrt{2}$

1 mark

Write the vector AE in terms of a and b
Q29.

Q30. Find the diagonal $A C$

The following rectangles have the same area. Find the value of x .

Q32.
Write the vector AM in terms of r and q

5. The following diagrams show a triangle $A B C$,

(a) $a^{2}=b^{2}+c^{2}-2 b c \cos A$

$|A B|^{2}=6.4^{2}+7.2^{2}-$
$(2 \times 6.4 \times 7.2 \times$
$|A B|^{2}=26.51$
$A B=\sqrt{26.51}$
(a) Calculate the length of AB (to 2 significant figures). $=5.15 \mathrm{~m}$
(b) Calculate the area of triangle $A B C$. $\rightarrow 5.2 \mathrm{~m}^{+}$
Arca $=\frac{1}{2} a b \sin c$
$=\frac{1}{2} \times 6.4 \times 7.2 \times \sin 44$
$=16 \mathrm{~m}^{2}$
10. In the ciagram below PT is a tangent to the circle, O is the center of the circle and angle RPT is 38° Find the size of angle ORS

$\hat{O R S}=90^{\circ}-26^{\circ}=64^{\circ}$

Write the vector AD in terms of a and b
Q34.

$\overrightarrow{A D}=2 \underline{a}+2 \underline{b}$
${ }^{\text {or }}$ $2(a+b)$

1 mark

Write the vector $A C$ in terms of a and b Q36.

Q37.

Evaluate

$$
3 \frac{2}{5}-1 \frac{3}{4}
$$

$$
\begin{aligned}
& \times 4 \frac{17}{5}-\frac{7 \times 5}{4 \times 5} \text { LCM }=20 \\
& =\frac{68}{20}-\frac{35}{20}=\frac{33}{20}=1 \frac{13}{20}
\end{aligned}
$$

2 marks

Q39.

$m=\frac{25-5}{2-0}=\frac{20}{2}=10$
$c=5 \checkmark$
$y=10 x+5$

Find the equation of this straight line in the form $y=m x+c$

3 marks

Write the vector $B C$ in terms of s and t Q38.

Write the vector EC in terms of s and t Q40.

Q43.

1 mark

Q44. Find the height

Q45.

1 mark

2 marks

Q47. Simplify

$$
\left(3 x^{2} y\right)^{2}=9 x^{4} y^{2} /
$$

Q48. Multiply out and simplify

$$
(1+\sqrt{2})^{2}
$$

Q49.

Q50.

$$
\frac{8 y^{9}}{2 y \times 2 y^{3}}=\frac{-25 j}{4 y^{5} ; 23^{3}}
$$

2 marks

2 marks

Q51.
Solve

$$
4 x-5>2 x-15
$$

3 marks

Q52.

Q54.

$$
\sqrt{75}-\sqrt{48}
$$

Q55.

Two vectors are defined as $\boldsymbol{u}=\binom{2}{-5}$ and $\boldsymbol{v}=\binom{-4}{3}$.
(a) Find the resultant vector $u+3 v$.
(b) Find $|\boldsymbol{u}+3 \boldsymbol{v}|$.

$$
3 v=\binom{-12}{9}
$$

$|u+3 v|=$ $\sqrt{(-10)^{2}+4^{2}}=\sqrt{16}=2 \sqrt{29}$

4 marks

Q56.

$b=3$

Part of the graph of $y=\cos b x^{\circ}$ is shown in the diagram.
State the value of b.

1 mark

Q58.

3 marks

Q60.

$$
\text { LKCM }=x(x+2)
$$

Express $\frac{3}{x}-\frac{5}{x+2}, x \neq 0, x \neq 2$, as a single fraction in its simplest form.

Q61.

The total emissions of greenhouse gases by the USA in 2007 amounted to the equivalent of 7.2 million tonnes of carbon dioxide. If the annual increase in emissions is 1.2%, calculate the total amount of emissions of greenhouse gases by the USA expected in 2010. Give your answer in millions of tonnes to 2 s.f.
$7.2 \times 1.012^{3}=7.462322842$
$\rightarrow 7$ Smition tonnes V
$\rightarrow 7$. Smillion tonnas

4 marks

Q62. Multiply out and simplify

$$
\begin{gathered}
(3 x-1)\left(2 x^{2}+3 x-4\right) \\
6 x^{3}+9 x^{2}-12 x-2 x^{2}-3 x+4 \\
6 x^{3}+7 x^{2}-x 5 x+4
\end{gathered}
$$

3 marks

Q64.

The diagram below shows the graph of $y=a x^{2}$.

Q65

The graph of $y=\sin b x^{\circ}$ is shown in the diagram.
State the value of b

1 mark

150 patients have been given a flu vaccine
The data is shown in the table below.
Q66.

$A G E$	GENDER			
	male	female		
5 or under	4	3		
$6-15$	7	8		
$16-59$	37	47		
60 or over	12	32		

What is the probability that
(a) a patient given the flu vaccine was male and aged 60 or over? $\frac{12}{150}=\frac{2}{48}$
(b) a patient given the flu vaccine was aged 5 or under?
$4+3=\frac{7}{150}$

Q67.
Joan buys gold and silver charms to make bracelets.
2 gold charms and 5 silver charms cost $£ 125$.
(a) Let g pounds be the cost of one gold charm and s pounds be the cost of one silver charm.
Write down an equation in terms of g and s ty illustrate the above information. $2 g+55=125$
4 gold charms and 3 silver charms cost $£ 145$.
$4 g+35=145 \sqrt{ }$
(b) Write down another equation in terms of g and s to illustrate this information.
(c) Hence calculate the cost of each type of charm.

$$
\begin{aligned}
& 2 g+55=125(x-2) \\
& 4 g+35=145 \\
& \begin{aligned}
2 g+5(15) & =125 \\
2 g+75 & =125 \\
2 g & =50
\end{aligned} \\
& 2 g=50 \\
& \begin{aligned}
-4 g-105 & =-200 \\
4 g+35 & =145 \\
\hline-7 s & =-105 \\
s & =15
\end{aligned} \\
& \text { A charm costs } £ 15 \\
& \text { A chain costs } £ 25
\end{aligned}
$$

6 marks

Q69.

The parabola with equation $y=x^{2}-2 x-3$ cuts the x-axis at the points A and B as shown in the diagram

(a) Find the coordinates of A and $B . A(-1,0) B(3,0) 3$ marks
(b) Write down the equation of the axis of symmetry of $y=x^{2}-2 x-3$.

$$
x=1 V
$$

1 mark

Q68.

Solve the inequality

$$
\begin{gathered}
4 x-5 \leq 7 x-20 \\
+5 \quad 5 \\
4 x \leq 7 x-15 \\
-7 x \quad-7 x \\
-3 x \leq-15 \\
\div 3 \leq-3 \\
x \geq 5
\end{gathered}
$$

Q70.

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Solve the equation

$$
\begin{aligned}
& c=2 \quad b=7 c=-3 \\
& 2 x^{2}+7 x-3=0 .
\end{aligned}
$$

$$
-7 \pm \sqrt{7^{2}-4 \times 2 \times(-3)}-2 \times 2,
$$

Give your answers correct to 1 decimal place $=\frac{-7 \pm \sqrt{49+24}}{4}$
$=-\frac{4}{4}$
$z=0.4$ for $x=-3.9$

4 marks

Q72. A mobile phone mast, $18 \cdot 2$ metres high, stands vertically in the centre of a
It is supported by a wire rope, 19 metres long, attached to the ground at a point on the circumference of the circle, as shown.

Calculate the circumference of the circle
3 marks

Q73
As the pendulum of a clock swings, its tip moves through an arc of a circle.

4 marks

Q75

(a) Express $\frac{a^{\frac{1}{2}} \times a^{\frac{5}{2}}}{a^{2}}$ in its simplest form. $\frac{a^{\frac{6}{2}}}{a^{2}}=\frac{a^{3}}{a^{2}}=a /$
(b) Express $\frac{2}{\sqrt{3}}$ as a fraction with a rational denominator. $\frac{2}{\sqrt{3}} \times \sqrt{\sqrt{3}} \times \frac{2 \sqrt{3}}{3}$
(c) Express $\frac{2}{x}+\frac{4}{x+3}, x \neq 0, x \neq-3$, as a single fraction in its simplest form.

$$
\frac{2(x+3)+4 x}{x(x+3)}=\frac{2 x+6+4 x}{x(x+3)}=\frac{6 x+6}{x(x+3)}
$$

Q77.

Change the subject of the formula $r=\frac{s t}{q}$ tos. $\quad \begin{gathered}q r \\ \\ \\ \\ \\ \\ \\ \frac{q^{-}}{t}\end{gathered}=5 \% /$

Water flows through a horizontal pipe of diameter 60 centimetres. The surface width, AB , of the water is 55 centimetres.

(a) Calculate the depth, d, of the water in the pipe.
(b) What other depth of water would give the same surface width? $60-18=42 \mathrm{~cm}$

Q76.

The diagram shows part of a football pitch with players at A, B, C and D.
BC is perpendicular to CD
$\mathrm{CD}=35$ metres, angle $\mathrm{CDB}=10^{\circ}$, angle $\mathrm{BDA}=10^{\circ}, \mathrm{AD}=34$ metres. Find the distance from \mathbf{A} to \mathbf{B}.

$$
\begin{aligned}
& c^{2}=b^{2}+c^{2}-2 b c \cos A \\
& A B^{2}=34^{2}+35.5-2 \times 34 \times 35.5 \times \cos 10^{2} \\
& A B^{2}=38.92 \\
& A B=\sqrt{38.92}=6.3 \mathrm{~m}
\end{aligned}
$$

B10.
Q78.

The arch of a railway bridge is represented by a parabola. The equation of
the parabola is

$$
y=20-(x-3)^{2}
$$

$$
\begin{aligned}
& \text { (a) State the coordinates of the maximum turning point of the parabola. } \\
& \text { (b) State the equation of the axis of symmerry. } \quad \underset{1}{2}=3 \mathrm{~J} \\
& \text { (c) Points A and B have the same } y \text {-coordinate. } \\
& \text { A is the point }(0,11) \text {. State the coordinates of B. }
\end{aligned}
$$

$$
\begin{aligned}
& 0+3+3=6 \\
& B(6, y)
\end{aligned}
$$

Q79.

Q81.
The graph below shows two straight lines.

$$
\begin{aligned}
& y-2 x=-3 \\
& 2 y+x=14 \quad \times 2
\end{aligned}
$$

The lines intersect at the point P. Find, algebraically, the coordinates of P.
$P=(4,5)$

4 marks

Q80.

In the diagram,
5 PQ is the diameter of the circle
s $\mathrm{PQ}=12$ centimetres
PR $=10$ centimetres.

Calculate the length of QR .

Give your answer as a surd in its simplest form.

$$
\begin{aligned}
Q R^{2} & =12^{2}-10^{2} \\
& =144-100 \\
& =44 \\
Q R & =\sqrt{44}=\sqrt{11 \sqrt{4}}=2 \sqrt{11}
\end{aligned}
$$

3 marks

Q82.

Q84.
tor of a circle, centre O , is shown below

The radius of the circle is $2 \cdot 3$ metres. Angle AOB is 65°.
Find the length of the arc $A B$

$$
\frac{65}{360} p \pi \times 4.6=2.61 \mathrm{~m}
$$

Q85.

$$
\begin{aligned}
& \sqrt{9} \sqrt{5}-2 \sqrt{5} \\
& =3 \sqrt{5}-2 \sqrt{5}=\sqrt{5}
\end{aligned}
$$

(a) Express $\sqrt{45}-2 \sqrt{5}$ as a surd in its simplest form.
(b) Express as a fraction in its simplest form

$$
\begin{aligned}
\frac{1}{x^{2}}+\frac{1}{x}, \quad \begin{array}{l}
x \neq 0 . \\
\text { LM }=x^{2}
\end{array} & \Rightarrow \frac{1}{x^{2}}
\end{aligned}+\frac{\frac{x}{x^{2}}}{}=\frac{1+x}{x^{2}}
$$

4 marks

Q87.

1. The sketch shows a triangle, ABC .

Calculate the area of the triangle.
$\frac{1}{2 a b} \sin c$ $\frac{1}{2} 100 \times 120 \times \sin 65$

$$
=\frac{5437.85 \mathrm{~m}^{2}}{}
$$

2

Q86.
A necklace is made of beads which are mathematically similar

The height of the smaller bead is 0.8 centimetres and its area is 0.6 square centimetres.
The height of the larger bead is 4 centimetres.
Find the area of the larger bead.
S. $F=4 \div 0.8=5 / \quad$ Area $5 f=5^{2}=25$
$0.6 \times 25=15 \mathrm{~cm}^{2}$
3 marks

Q88.

(a) (i) Factorise completely

$$
3 y^{2}-6 y . \quad 3 y(y-2)
$$

(ii) Factorise

$$
y^{2}+y-6 . \quad(y+3 x y-2)
$$

(b) Hence express $\frac{3 y^{2}-6 y}{y^{2}+y-6}$ in its simplest form. $\frac{3 y(y-7)}{(y+3)(y-2)}$

$$
=3 y / y+3
$$

6 marks
6. A container to hold chocolates is in the

Q89. 6. ${ }^{\text {6. container to hold chocolates is in the }}$ shown below.

Calculate the volume of the container
Give your answer correct to one significant figure.

$\frac{1}{3} \pi r^{2} h-\frac{1}{3} \pi r^{2} h$
 $\left(\frac{1}{3} \times \pi \times 8^{2} \times 32\right)$
 $-\left(\frac{1}{3} \times \pi \times 5^{2} \times 20\right)$

$=2144.66$ 7523.6

$$
\begin{aligned}
& =1621.06 \mathrm{~cm}^{3} \sqrt[5]{ } \\
& \rightarrow 2000 \mathrm{~cm}^{3} \sqrt{3}
\end{aligned}
$$

Q90.
(a) Factorise

$$
x^{2}-4 y^{2} . \quad(x+2 y)(x-2 y)
$$

(b) Expand and simplify
(c) Expand

$$
\begin{aligned}
& (2 x-1)(x+4) \\
& 2 x^{2}+8 x-x y^{4}=2 x^{2}+7 x y^{4} \\
& x^{\frac{1}{2}}\left(3 x+x^{-2}\right)=3 x^{\frac{3}{2}}+x^{-\frac{3}{2}}
\end{aligned}
$$

Q91. The diagram below shows part of the graph of $y=a x^{2}$

Find the value of a.
2

Q93.

$$
\begin{aligned}
& \text { The diagram below shows a circle, centre } C \text {. } \\
& \qquad \begin{aligned}
& P A C=27-15 \\
&=225-144 \\
& \text { The radius of the circle is } 15 \text { centimetres. } \\
& \text { A is the midpoint of chord PQ. } \\
& \text { The length of } A B \text { is } 27 \text { centimetres. } \\
& \text { Calculate the length of } P Q \text {. } \\
& \qquad \begin{aligned}
81
\end{aligned}=9 \mathrm{~cm}^{2}-12^{2}
\end{aligned} \\
& \qquad P Q=2 \times 9=18 \mathrm{~cm}
\end{aligned}
$$

Q95.
Two groups of people go to a theatre. Bill buys tickets for 5 adults and 3 children.
The total cost of his tickets is $£ 158 \cdot 25$.
(a) Write down an equation to illustrate this information, $5 a+3 c=158.25$
(b) Ben buys tickets for 3 adults and 2 children. The total cost of his tickets is $£ 98$. Write down an equation to illustrate this information. $3 a+2 c=98$
(c) Calculate the cost of a ticket for an adult and the cost of a ticket for a

$$
\begin{array}{ll}
5 a+3 c=158.25 & (\times 2) \quad 10 a+b c=316.5 \\
3 a+2 c=98 & (x 3)
\end{array} \begin{aligned}
& \frac{9 a+b c}{5}=294 \\
& a
\end{aligned}
$$

$5(22.5)+3 c=158.25$ $112.5+3 c=158.25$ $c=45.75$
An adult ticket costs $\mathcal{L} 2.50$ $c=15.25$ A child's ticket costs 15.25

Q92.

Q94.

Q96.
The diagram below shows the position of three towns.
The distance from

- Lowtown to Midtown is 75 kilometres.
- Midtown to Hightown is 110 kilometres.
- Hightown to Lowtown is 85 kilometres.

15 Hightown directly north of tow
Justify your answer.
thagoras states that a triangle is right-angled ${ }^{4}$
Pythagoras states that a triangle is right-angled
if $a^{2}+b^{2}=c^{2}$ where c is the hypotenuse
$a^{2}+b^{2} \quad c^{2}$
$\begin{gathered}85^{2}+75^{2} \\ 12850\end{gathered} \neq 12100$
\Rightarrow Hightown is not directly north of Lout own
as triangle is not-right angled.

