Daily Practice

1.

Solve algebraically the system of equations
$3 x+2 y=17$
$2 x+5 y=4$.
Today we will be learning how to draw the graphs of trigonometric functions.
2. Simplify $\frac{x^{2}-4 x}{x^{2}+x-20}$.

Like other functions, points created using trigonometric functions can also be plotted to form a graph.

We can create a graph by using values along the x axis.

A typical sine graph goes to 360° on the x-axis

The graph of the Sine Function

Now draw a sketch of the graph $y=2 \sin x$

Daily Practice

Q1. State the roots of the function $y=x^{2}+4 x-12 \quad(-6,0)(2,0)$

$$
\text { Roots } \Rightarrow y=0 \quad \begin{aligned}
& 0= x^{2}+4 x-12 \\
&(x+6)(x-2)=0 \quad x=-6 \text { or } x=2
\end{aligned}
$$

Q2. Calculate the gradient of the line joining ($3,-1$) and $(7,6)$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{6}}=\frac{6-(-1)}{7-3}=\frac{7}{4}
$$

$$
(9+10 b)(9-10 b)
$$

Q4. Calculate the volume of a sphere with diameter 10 cm to 2 s.f.

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \times \pi \times 5^{3}=523.5 \rightarrow 520 \mathrm{~cm}^{3} \\
& \text { Q5. Rearrange } 2 t^{2}+b=c^{2} \text { such that } t \text { is the subject }
\end{aligned}
$$

$$
\begin{aligned}
&-b-b \\
& 2 t^{2}=c^{2}-b \\
& \div 2 \div 2 \\
& t^{2}=\frac{c^{2}-b}{2} \\
& t=\sqrt{\frac{c^{2}-b}{2}}
\end{aligned}
$$

Can you remember what a sketch of a Sine graph looks like?

Today we will be continuing to draw the graphs of trigonometric functions.

Today we will be looking at the features of trigonometric graphs and looking at transformations of graphs.

Reriod and Amplitude

The period of a function is the length of a wave before it repeats itself.

The graphs of Sin and Cos have a period of 360° whereas Tan has a period of 180°

The amplitude of a graph is half the height between the maximum and minimum turning points. The amplitude of the functions $y=\sin x^{0}$ and $y=\cos x^{0}$ is 1 . We don't need to worry about the amplitude of \tan.

Daily Practice

Q1. Factorise $6 x^{2}+17 x+5$

Q3. What is the semi-interquarle range of the data below?

Q4. State $=21$ equaon of the line joining $(-3,2)$ and $(1,8)$
Give your answer in the form $A x+B y+C=0$

Graph transformations
The amplitude and period of a trig. function can change if the graph is transformed (stretched or compressed horizontally or vertically).

Desmos

Today we will be continuing to learn about graph transformations.

Graph transformations
Given the functions $y=a \sin x^{0}$ or $y=a \cos x^{0}$, 'a' represents the amplitude of the function. ' - a' means the graph is upside down.

Given the functions $y=a \sin b x^{\circ}$ or $y=a \cos b x^{\circ}$, 'b' represents the number of times the graph repeats itself in $360^{\circ}\left(360^{\circ} \div\right.$ period). For $y=\tan b x^{\circ}$, it is how many times the graph repeats itself in $180^{\circ}\left(180^{\circ} \div\right.$ period $)$.

We need to be able to identify and sketch these graphs

Graph transformations

Examples: Sketch graphs of the following
(b) $y=-\cos x^{\circ}$

Q1. Solve $6 x-2(5 x+4)=0 \quad-4 x=8$

$$
\begin{aligned}
6 x-10 x-8 & =0 \quad x=-2 \\
-4 x-8 & =0
\end{aligned}
$$

Q2. State the roots of the function $y=x^{2}+7 x+12$

$$
\begin{array}{ll}
y=0 \text { at roots } \quad & x^{2}+7 x+12=0 \\
& (x+3 x+4)=0 \quad \frac{x=3}{x}=-
\end{array}
$$

Q3. State the turning point, nature and axis of symmetry of the
function $y=(x-4)(x+2)$ $x^{2}-2 x-8$ $(x-1)^{2}-9$ T.P. $=(1,-9$
Q4. Solve the equation $x^{2}-4 x=0$

$$
x(x-4)=0
$$

$$
x=0 \text { or } x=4
$$

Axis of symmetry; $x=1$

Graph transformations

Examples: Sketch graphs of the following

Graph transformations
Examples: Sketch graphs of the following

Today we will be continuing to learn how to draw and identify trigonometric graph transformations

Homework Online due Thursday 23.6.2016

Graph transformations

Examples: Sketch graphs of the following

(c) $y=3 \sin 4 x^{\circ}$

Daily Practice

17.6.2016

Q1. Factorise $x^{2}-4 y^{2}$

$$
(x-2 y)(x+2 y)
$$

Q2. State the y - intercept, turning point and axis of symmetry of the function $f(x)=(x-3)^{2}+2$

$$
\begin{aligned}
& 0-3)^{2}+2 \\
& y=9+2=11
\end{aligned}(0,11)
$$

TiP. $=(3,2) \quad$ A $x=0$ S Sym. $) x=3$

Q3. Rearrange the formula $\begin{aligned} Y & =2 a a^{2}+b \text { such that } c \text { is the subject } \\ 4-b & =2 a c^{2}\end{aligned} \quad \begin{aligned} & Y-b \\ & 2 a=c^{2}\end{aligned} \quad c=\sqrt{\frac{y-b}{2 a}}$

$$
a b
$$

Q4. State the equation of the line joining $(3,5)$ and $(-4,1)$
$m=\frac{1-5}{-4-3}=\frac{-4}{-7}=\frac{4}{7} \quad y-b=m(x-a)$

$$
\begin{gathered}
y-5=\frac{4}{7}(x-3) \\
7 y-35=4 x-12 \\
7 y=4 x+23
\end{gathered}
$$

Sketching graphs with multiple angles

Feedback from looking at jotters:

- When sketching graphs such as $y=\sin 3 x^{0}$, work out the period of the graph and use this to annotate the x - axis.
- Ensure that you have a maximum and minimum T.P.
- Label the axes after yo have sketched the curve.

Graph transformations

Questions: Sketch graphs of the following
(a) $y=4 \sin x^{\circ}$
(e) $y=2 \cos 3 x^{\circ}$
(b) $y=2 \cos x^{0}$
(f) $y=-2 \sin 2 x^{\circ}$
(c) $y=-\sin x^{0}$
(g) $y=\tan 3 x^{\circ}$
(d) $y=\sin 2 x^{\circ}$
(h) $y=-\sin 3 x^{\circ}$
L.I: Identifying the equation of a trig. function from its graph.
Homework due Thursday 23.6.16

Graph transformations

Example:

The graph below is of the form $y=a \sin b x^{\circ}$, state the values of a and b

Write down the values of a and b for each

Write down the values of a and b for each

Write down the values of a and b for each

Write down the values of a and b for each

$$
y=a \cos b x^{\circ}
$$

Write down the values of a and b for each

Write down the values of a and b for each

Graph transformations
Task:
Draw a graph of a transformed trigonometric function.
Write down another trig. function

Swap your jotter with the person beside you. Then

1. State the equation of the function they have drawn
2. Draw the function they have written down.

Today we will be learning about vertical and horizontal transformations of graphs.

Vertical Movement - Graph Transformations
Examples: State the equations of the following

2. State the turning point of the function $y=2(x-3)^{2}+4$ $T_{0} P_{0}=(3,4)$

Vertical Movement - Graph Transformations
If a trig. graph is transformed vertically by shifting up or down, the amplitude will stay the same.

Vertical Movement - Graph Transformations
Examples: State the equations of the following
2.

1.

The radius of the circle is 15 centimetres.
A is the mid-point of chord PQ.
The length of $A B$ is 27 centimetres.
Calculate the length of PQ .

Horizontal Movement - Phase Angle

If a trig. graph is transformed horizontally left or right. The amplitude \& period will stay the same but the roots will change.
Similar to quadratic functions (+) means movement left and (-) means movement right.

Examples:

1. $y=a \cos (x+k)^{0}$

$y=5 \cos (x+90)^{\circ}$

The smaller jar has a height of 15 centimetres and a volume of 750 cubic
centimetres.
The larger jar has a height of 24 centimetres
Calculate the volume of the larger jar.

Today we will be continuing to learn how to solve trig. equations.

Solving Trig. Equations
$24 \cdot 6 \cdot 16$
Solving trig. equations involves finding the corresponding x when you know the y.

Eg. $\quad y=3 \cos x^{0}$ is a graph

When asked, solve

$3 \cos x^{\circ}=2$
This means, 'what are the values of x when $\mathrm{y}=2$?'

Solving Trig. Equations

Trig. equations can be solved in a similar way to regular equations.
For now, we are only going to look at getting one solution (the acute or reference angle)

Examples: Solve the following
$0 \leq x \leq 90^{\circ}$
(a) $2 \cos x^{0}=1$
$\cos x^{\circ}=05$
$x=\cos ^{-1}(0.5)$ $x=60^{\circ}$

(d) $3-2 \cos x^{0}=4$

Solving Trig. Equations
Questions: Solve the following
$0^{\circ} \leq x \leq 90^{\circ}$ (reference angle)
(i) $3 \tan x^{0}=5$
(ii) $\cos x^{\circ}-0.6=0$
(iii) $2 \cos x^{\circ}-1=0$
(iv) $-2+2 \tan x^{\circ}=0$
(v) $5 \cos x^{\circ}+4=0$

Solve the following equations for
$\mathrm{O}^{\circ} \leq x \leq 90^{\circ}$
(reference angle)
(a) $2 \sin x^{0}-1=0$
(b) $4 \cos x^{0}-3=0$
(c) $5 \tan x^{0}-12=0$
(d) $3 \sin x^{0}+6=7$
(e) $4 \tan x^{0}-3=10$
(f) $6 \cos x^{0}-2=3$
(g) $3 \cos x^{0}+4=2$
(h) $7 \tan x^{0}+3=0$
(i) $6 \sin x^{0}+5=0$
(j) $10 \cos x^{0}+12=6$
$5 \cos x^{\circ}+4=0$

Daily Practice

Q1. Two pieces of floor are similar in shape. The area of the larger piece is $20.25 \mathrm{~m}^{2}$, calculate the area of the smaller piece $\quad S . f=9 \div 4=2.25$

Q2. Calculate the internal angle of this pentagon

$$
360^{\circ} \div 5=72^{\circ}
$$

$$
\left(180^{\circ}-72^{\circ}\right) \div 2=54^{\circ}
$$

$$
54^{\circ} \times 2=108^{\circ}
$$

Solving Trig. Equations
Solve the equation

$$
\begin{aligned}
& 3 \sin x^{0}+2=3 \\
&-2-2 \\
& 3 \sin x^{\circ}=1 \\
& \sin x^{\circ}=\frac{1}{3} \\
& x^{\circ}=\sin ^{-1}\left(\frac{1}{3}\right)=9.5^{\circ}
\end{aligned}
$$

Is there another possible solution between O and 360° ?

Finding mare tun or solution

Due to symmetry in the $\sin , c o s$ and \tan graphs, there is often more than I solution to trig. equations.

These other angles can be found by using the acute or reference angle. Always heep this positive when using the inverse

Eg. $\sin x^{\circ}=\left(\frac{-3}{4}\right)$ work out $\sin ^{-1}\left(\frac{3}{4}\right)$
Then sketch the graph of the function to see where it is positive or negative.

Symmetry in Trig. Graphs
Due to symmetry, there are 4 places on the graphs of \sin , \cos and \tan that give the same y - value (ignoring the sign.)

Today we will be continuing to learn about trigonometric equations.

Solving Trig. Fquations (All Solutions)

Examples: Solve the following
(a) $3-2 \cos x^{\circ}=4$
$-2 \cos x^{\circ}=1$
$\cos x^{\circ}=-\frac{1}{2}$
Ref. ongle $: \cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ}$
$x=180^{\circ}-60^{\circ}=120^{\circ}$
$x=180^{\circ}+60^{\circ}=240^{\circ}$

Daily Practice 19.8.2016

Q1. Multiply out and simplify $(3 x-1)\left(2 x^{2}+7 x-6\right)$

$$
\begin{aligned}
& 3 x-1)\left(2 x^{2}+7 x-6\right) \\
& 6 x^{3}-2 x^{2}+21 x^{2}-7 x+6-18 x \\
& 6 x^{3}+19 x^{2}-25 x+6
\end{aligned}
$$

Q2. Factorise and then solve $x^{2}-6 x-16=0$

$$
\begin{array}{rl}
(x+2)(x-8)=0 \\
x+2=0 & x-8=0 \\
x=-2 & x=8
\end{array}
$$

Q3. Write $x^{2}+6 x-1$ in the form $(x+p)^{2}+9$
$(x+3)^{2}-10$
Q4. Write as a single fraction $x_{x}^{x} \frac{3}{x+1}+\frac{2}{x} \quad$ where $\mathrm{x} \neq-1,0$

$$
\frac{3 x}{x(x+1)}+\frac{2(x+1)}{x(x+1)}=\frac{5 x+2}{x(x+1)}
$$

Symmetry in Trig. Graphs
 Trig. Equations

First find the acute or reference angle x^{0}. To get this, always find the sin/ \cos / \tan inverse of the positive value.
Then use your graph to see where your angles are. They will be in 2 of the four sections of your graph. Your solutions will be 2 of the following:

- Between O and 90° i.e. x^{0}
- $180^{\circ}-x^{0}$
- $180^{\circ}+x^{0}$
- $360^{\circ}-x^{\circ}$
(b) $5+\tan x^{0}=4$ $\tan x^{\circ}=-1$
ref. angle $=\tan ^{-1}(1)=45^{\circ}$

$O \leq x \leq 360^{\circ}$
(c) $4 \sin x^{\circ}+2=3$
$4 \sin x^{\circ}=1$ $\sin x^{\circ}=\frac{1}{4}$
$x=\sin ^{-1}\left(\frac{1}{4}\right)=14.5^{\circ}$
Q. Solve $2 \cos x^{\circ}-1=0$

Today we will be continuing to learn how to solve trig equations.

Daily Practice
22.8 .2016

Write the following in order of size starting with the smallest.

[^0]$O \leq x \leq 360^{\circ}$

Solving Trig. Equations (All Solutions)

Solve the following equations where $0 \leq x \leq 360$
(a) $2 \sin x^{0}=1$
(b) $3 \cos x^{0}=2$
(d) $2 \cos x^{\circ}=-1$
(e) $2 \tan x^{\circ}=-8 \quad$ (c) $3 \tan x=5$
(g) $5 \tan x^{\circ}=23.5$
$\begin{array}{ll}\text { (h) } 5 \sin x^{0}=2 & \text { (i) } 6 \cos x^{0}=1\end{array}$
(j) $8 \sin x^{\circ}=-3$
(k) $11 \cos x^{\circ}=-9$
(l) $10 \tan x^{\circ}=$

Solve the following equations where $0 \leq x \leq 360$
(a) $\sin x^{\circ}-1=0$
(b) $\quad \cos x^{\circ}+1=0$
$\tan x^{\circ}-1=0$
(d) $2 \sin x^{\circ}+1=0$
(e) $2 \cos x^{\circ}-1=0$
(f) $2 \tan x^{\circ}-1=0$
(g) $4 \cos x^{\circ}-3=0$
(h) $3 \sin x^{\circ}-2=0$
$5 \cos x^{\circ}+2=0$
(j) $3 \tan x^{\circ}-2=0$
(k) $3 \cos x^{\circ}+1=0$
$7 \sin x^{\circ}+3=0$

Solving Trig. Equations in Context
In the diagram below, the point L represents the lift:

The height, h metres, of the lift above the ground is given by the formula
$h=15 \tan x^{\circ}+1 \cdot 7$,
where x° is the angle of elevation of the lift from the surveyor at point P.
(a) What is the height of the lift above the ground when the angle of elevation
from P is 25° ? $\quad h=15 \tan 25^{\circ}+1.7=8.7 \mathrm{~m}$
(b) What is the angle of elevation at point P when the height of the lift above the
ground is $18 \cdot 4$ metres? $18.4=15 \tan x+1.7$ $16.7=15 \tan x^{\circ}$ $1 \cdot 115=\operatorname{ton} x^{\circ}$ actiognth.)

Solving Trig_ Equations in Context

At the carnival, the height, H metres, the ground is given by the formula

t seconds after starting to turn.
(a) Find the height of the carriage above the ground after 10 seconds.
(b) Find the two times during the first turn of the wheel when the carriage is 12.5 metres above the ground.
(a) $\mathrm{H}=10+5 \sin 10^{\circ}=10.87$ metres
(b) $H=12.5$
$12.5=10+5 \sin t^{\circ}$
$2.5=5 \sin t^{\circ}$
$0.5=\sin t^{\circ}$
$t=\sin ^{-1}(0.5)=30^{\circ}$
$180^{\circ}-30^{\circ}=100^{\circ}$

It is 125 m above the ground
offer 30 seconds and offer
150 seconds.

Daily Practice 25.8 .2016

Q1. State the equation of the line joining $(-2,5)$ and $\left(1,-a=\frac{4}{4}\right)$ and give your answer in the form $A x+B y+C=0 \quad \begin{array}{ll} & y-5=-3(x+2)\end{array}$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-4-5}{1-(-2)}=\frac{-9}{3}=-3 \quad \begin{array}{ll}
y-5=-3 x-6 \\
& 3 x+y+1=0
\end{array}
$$

Q2. State the turning point of the function $y=(x-3)^{2}+2$

$$
T \cdot P_{1}=(3,2)
$$

Q3. Write as a single fraction $\frac{3}{x}+\frac{2}{x+3} \quad$ where $\mathrm{x} \neq \mathrm{O},-3$

$$
\frac{3(x+3)+2 x}{x(x+3)}=\frac{5 x+9^{x}}{x(x+3)}
$$

Q4. Factorise $\begin{aligned} & x^{2}-9 x+18 \\ & (x-6)(x-3)\end{aligned}$

Trig. Graphs - Intersection of a line and a wave
Trig. Equations may come in disguised forms! The graph of $y=3 \cos x$ is shown below.

$y=3 \cos x$
$-2=3 \cos x$ $\cos ^{4}\left(\frac{2}{3}\right)=48.2^{\circ}$ $x=180^{\circ}-48.2^{\circ}=1388^{\circ}$ $x=180^{\circ}+48.2^{\circ}+2.2882^{\circ}$ $P\left(1318_{i}^{\circ}-2\right) Q\left(2880^{\circ},-2\right)$

Trig. Graphs - Intersection of a line and a wave

Pg. 122 Q3.4 fo. 83 Chase Qt if fins ted.

Find the coordinates of P and Q

$\left(\sin ^{2} x\right)$

$=(\sin x)^{2}=0.49$ $\sin x=\sqrt{0.49}$

Daily Practice

26.8 .2016

Q1. Factorise $2 x^{2}+7 x-15$

Q2. Write as a single fraction $\frac{3 x}{x+1} \div \frac{x}{2}$ where $x \neq-1$
$\frac{3 x}{x+1} \times \frac{2}{x}=\frac{6 x}{x(x+1)} \div x^{x+1} \div x=\frac{6}{x+1}$
Q3. Solve the equation $3-2 \sin x_{0}^{0}=4$ where $O^{\circ} \leq x \leq 360^{\circ}$

Q4. Rearrange the formula such that q is the subject $360^{\circ}-30^{\circ}=330^{\circ}$

$$
\begin{gathered}
\frac{5 b}{2 q^{2}}=1-c \quad \div 2(1-c)=2 q^{2}(1-c) \\
\frac{5 b}{2(1-c)}=q^{2} \\
q=\sqrt{\frac{5 b}{2(-c-c)}}
\end{gathered}
$$

Trig. Identities

Trig. Identities are relationships between \sin , \cos and \tan. (Ways of getting one in terms of the other (s))

You can use them to show that statements are true
You need to know these (but not their proofs) for your exam.

$$
\sin ^{2} x+\cos ^{2} x=1
$$

$(\sin x)^{2}+(\cos x)^{2}=1$
$\sin x^{\circ}=\frac{0}{h}=\frac{4}{5}$
$\cos x^{\circ}=\frac{9}{h}=\frac{3}{5}$
$\left(\frac{4}{5}\right)^{2}+\left(\frac{3}{5}\right)^{2}=\frac{16}{25}+\frac{9}{25}=\frac{25}{25}=1$

Like any other function, the roots of a trig. function can be found by equating y to zero and the y-intercept can be found by equating x to zero.

Today we will be learning about trigonometric

 identities.$\sin ^{2} x+\cos ^{2} x=1$

We can rearrange the above identity to get it in terms of cos or sin.

$$
\begin{aligned}
& \sin ^{2} x=1-\cos ^{2} x \\
& \cos ^{2} x=1-\sin ^{2} x
\end{aligned}
$$

Q1. Calculate the volume of a sphere with a diameter of 15 cm . Give

$\sin x^{\circ}=\frac{4}{5} \quad \cos x^{\circ}=\frac{3}{5}$
$\frac{4}{5} \div \frac{3}{5}=\frac{4}{5} \times \frac{5}{3}=\frac{20}{15}=\frac{4}{3}$
$\operatorname{Tan} x^{\circ}=\frac{4}{3}$ too!.!

Today we will be learning about trigonometric identities.
your answer to 2 sf.
Q2. Calculate the length of k $\sin 45^{\circ}=\frac{k}{72} \quad 50.9 \mathrm{~cm}=k$ $72 \sin 45^{\circ}=k$
Q3. Multiply out and simplify
 $6 x^{2}+7 x-20$
Q4.Solve the equation $x^{2}+8 x-20=0.0$

$$
x+10=0 \text { or } x-2=0
$$

$x=-10 \quad x=2$
$\begin{aligned} k^{2}+h^{2} & =72^{2} \\ 2 h^{2} & =72^{2}\end{aligned}$
L.H.S

2. Show that $(\sin x-\cos x)^{2}+2 \sin x \cos x=1$?
L.H.S
$(\sin x-\cos x)^{2}+2 \sin x \cos x$ $(\sin x-\cos x)(\sin x-\cos x)+2 \sin x \cos x$ $\sin ^{2} x-\operatorname{sh} x \cos x-\cos x \sin x+\cos ^{2} x+2 \sin x \cos x$ $\sin ^{2} x-2 \sin x \cos x+\cos ^{2} x+2 \operatorname{sen} / \cos x$
$=\sin ^{2} x+\cos ^{2} x=1=$ R.H.S
po. 121

Daily Practice
$4 \cos ^{2} A$
$4\left(1-\sin ^{2} A\right)$
$=4-4 \sin ^{2} A=$ R.H.S

Q1. Factorise $\begin{aligned} & 3 x^{2}-5 x-12 \\ & 3 x+4)(x\end{aligned}$
Q1. Factorise $\begin{aligned} & x^{2}-5 x-12 \\ & 3 x+4 \underbrace{4}_{-9 x}(x-3)\end{aligned}$
Q2. Solve algebraically the set of equations $\qquad \begin{array}{r}x+2 y=5 \\ x+2 y=5 \text { and }-2 y=1-x \\ +x \\ +x \\ (3,1)\end{array} \quad \begin{array}{r}2 x=1\end{array} \quad \begin{array}{r}3+2 y-5 \\ 2 y>2\end{array} \quad \begin{aligned} & 2 y=1\end{aligned}$
Q3. Sketch the graph of $y=(x+3)^{2}-2$ showing the turning point, $y-$
intercept and axis of symmetry.
T.P. $=(-3,-2)$
$\begin{aligned} y \text {-intercept a } \Rightarrow x & =0 \\ y & =(0+3)^{2}-2 \\ y & =9-2\end{aligned}$ $x=-3$
Assisi
Symuty
$y=(0+3)^{2}-2$
$y=9.2 \quad(0,7)$
$y=7 \quad$ (0,7

Today we will be continuing to practise trig identities.

LHS
$2 \cos ^{2} A+3 \sin ^{2} A$
$2 \cos ^{2} A+3\left(1-\cos ^{2} A\right)$
$2 \cos ^{2} A+3-3 \cos ^{2} A$
$-\cos ^{2} A+3$
$=3-\cos ^{2} A=$ R.H.S

Daily Practice

Q3. Solve the equation $5 \cos ^{5} x^{0}{ }^{+} x^{2}=-4 \quad O^{\circ} \leq x \leq 360^{\circ}$

An oil tank has a circular cross-section of radius $\mathbf{2 \cdot 1}$ metres
It is filled to a depth of 3.4 metres.

(a) Calculate x, the width in metres of the oil surface. $1.65_{\times 2}$
(b) What other depth of oil would give the same surface width? dionefer $=4.2$

$$
4.2-3.4=0.8 \mathrm{~m}
$$

$$
\begin{aligned}
& 8^{2}=64
\end{aligned}
$$

Today we will be practising mixed questions on trigonometry.

The diagram below represents a flag is coloured red and blue,
Triangle ORT represents the red section
PQTS represents the blue section.

Triangles PRS and QRT are mathematically similar.
The area of triangle ORT is 400 square centimetres
Calculate the area of PQTS, the blue section of the flag

Today we will be continuing to practise mixed questions on trigonometry.

Today we will be doing some revision for the Relationships Unit

Daily Practice
2.2016

Qu \qquad

22. Draw a sketch of the graph $y=(x-2)(x+4)$ showing the turning
point, axis of symmetry and roots.
Roots: $(x-2)(x+4)=0$
Avs \& symmetry: $x=-1$
y-intuopt: $(0-2)(0+4)=y$ x.e $8 y=\begin{gathered}(-1-2)(-1+4) \\ (-3)(3)=-9\end{gathered}$

Daily Practice

Q2. Multiply out and simplify $(3 x-4)(x+7)$

$$
3 x^{2}+21 x-4 x-28
$$

$$
5 y=-6 x+13
$$

$$
3 x^{2}+17 x-28
$$

Q3. Rearrange $V=\pi r^{2} h$ such that r is the subject

Q5. State the turning point and y intercept of the function $y=(x+4)^{2}$

$$
\begin{aligned}
& \text { T.P. }=(-4,0) \\
& y \text {-intrapt }-) \quad x=0 \\
& y=(0+4)^{2}=16 \quad(0,16)
\end{aligned}
$$

Coffee is sold in regular cups and large cups.
The two cups are mathematically similar in shape.

[^0]: (d) $3-2 \cos x^{\circ}=4$

