Daily Practice

Congruent Shapes

$17 \cdot 8 \cdot 15$
Two shapes are congruent if they are exactly the same shape and size. One may be a rotation or translation of the other.

Similar Shapes
Two shapes are similar if they are the same shape but one is an enlargement or reduction of the other.

Similar shapes have equal corresponding angles and their corresponding sides are in the same ratio.

Similar Shapes
To prove that two shapes are similar, show any one of the following is true:

1. The sides are in the same proportion

2. Two sides are in the same proportion and the included angle is equal

(Trig. Ratios are based on similar shapes)
3. All the angles in the 1st shape are equal to the angles in the 2 nd .

Similar Shapes
The scale factor is the multiplier for which the shape has been enlarged or reduced in size.

All sides will have been increased/reduced by the same scale factor for the shapes to be similar.

Scale factor can be calculated by dividing a dimension of a shape by the same dimension on the enlarged/reduced version of the shape.

Similar Shapes

(ii) Calculate the length of $X Z$

$$
\begin{aligned}
& 20 \div 30=\frac{2}{3} \\
& 18 \times \frac{2}{3}=12=X Z
\end{aligned}
$$

Daily Dractice

18.8.15

Q1. Multiply out and simplify $7(2 x-1)+4 x-3$

$$
6.7 \times 10^{4}
$$

Q4. Round 7152.88 to 3 significant figures
Q5. $1 \frac{2}{5}-\frac{3}{8}=\frac{x^{8} \frac{7}{5}-\frac{3^{* 5}}{8}}{\times 5}=\frac{56}{40}-\frac{15}{40}=\frac{41}{40}=\frac{1}{40}$

Similar Shapes

2. Calculate the length of g

$$
\begin{array}{c||l}
\text { s.f. }=60 \div 45=1 \frac{1}{3} \\
g=51 \times 1 \frac{1}{3}=68 \mathrm{~m}
\end{array} \| \begin{aligned}
& \text { s.f. }=45 \div 60=0.75 \\
& g=51 \div 0.75=68 \mathrm{~m}
\end{aligned}
$$

L.I: Today we are going to continue working out missing sides in similar shapes.

For each pair of similar shapes, find the missing lengths
(a)

Similar Shapes

(c)

d)

Similar Shapes
Sometimes similar shapes can be within the same shape.

Similar Shapes
2. Find the missing lengths in these similar shapes

b)

Daily Practice
19.8.15

Q1. Round 89.778 to (i) 1 decimal place (ii) to 2 s.f.

Q2. Solve the equation $3(x+2)-4(x-5)=15$

Similar Shapes

Enlargement S.F $=A$ dimension of the larger shape \div the same dimension of the smaller shape.

Reduction S.F $=$ A dimension of the smaller shape \div the same dimension of the larger shape.
3. By drawing both triangles separately, work out the missing lengths in these diagrams.

(c)

(b)

Worksheet

Daily Practice
21.8.15

Q1. Multiply out and simplify 7(2x-3)+2(x+1)-5x

$$
\begin{gathered}
14 x-21+2 x+2-5 x \\
11 x-19
\end{gathered}
$$

Q2. Solve the equation $0.5 x+3=24 \quad x=42$
$0.5 x=21$
Q3. Calculate the mean, median \& mode of $3,2,-1,5,6$

Q5. $2 \frac{4}{7}-\frac{1}{2}$

$$
x^{2} \frac{18}{7}-\frac{1}{2}=\frac{36}{14}-\frac{7}{14}=\frac{29}{14}=2 \frac{1}{14}
$$

$$
S=39.3^{\circ}
$$

Area Scale Factor

2.

Two Christmas decorations are mathematically similar minc in shape.
The larger decoration has an area of $128 \mathrm{~cm}^{2}$.
Calculate the area of the smaller decoration.

$$
s . f=16 \div 10=1.6
$$

$$
\text { Area sf: }=(1.6)^{2}=2.56 \quad 128 \div 2.56=50 \mathrm{~cm}^{2}
$$

Daily Practice

Q1. Write the formula hy $+k=2 x$ in terms of y
$\begin{aligned} & -K \\ & h y \\ & h \\ & -2 x-K\end{aligned} \quad y=\frac{2 x-K}{h}$
$\div h \quad \div h(x-7)$
Q2. Solve the equation $\begin{aligned} 3 x^{-h}-4 & =2(x-7) \\ 3 x-4 & =2 x-14\end{aligned}$

$$
\begin{gathered}
3 x=2 x-10 \\
x=-10
\end{gathered}
$$

Q3. State the size of the angle x

$$
\begin{aligned}
& 180^{\circ}-\left(90^{\circ}+48^{\circ}\right) \\
& 180^{\circ}-138^{\circ}=42^{\circ}
\end{aligned}
$$

Q4. $567.22 \times 400=56722$

Q5. $2 \frac{1}{3} \div \frac{3}{4}$

$$
\begin{array}{r}
x \quad 4 \\
226888 \\
\hline
\end{array}
$$

$$
\frac{7}{3} \div \frac{3}{4}=\frac{7}{3} \times \frac{4}{3}=\frac{28}{9}=3 \frac{1}{9}
$$

-
10

$V=150 \mathrm{~cm}^{3} \times 8 \quad V=1200 \mathrm{~cm}^{3}$
$V=1000 \mathrm{~cm}^{3} \quad$ sf: $f=3 \quad V=27000 \mathrm{~cm}^{3}$
$\times 27$

I can find the scale factor and hence missing dimensions of similar shapes.

I can calculate the area scale factor and
use it to find the area of the
enlarged/reduced shape.

Today we will be learning how to calculate volume scale factor.

Homework Online - Due Monday 31.8.15

Volume Scale Factor

20 Questions Mental Maths

Today we will be completing a check-up on similar shapes.

Homework Online - Due Monday 31.8.15

Topics to revise for test Unit 2 Level 4:

- Changing the subject of a formula.
- Right-Angled Trigonometry including bearings.
- Angles in triangles \& Circles.
- Straight Line (Sketching, stating the equation).
- Similar Shapes.

Honewororlue
$31.8 \cdot 15$

