Daily Practice \qquad 5.6.2015

Q1. Multiply out and simplify $3(2 x+4)-x(7-x)$

$$
6 x+12-7 x+x^{2}
$$

$$
12-x+x^{2}
$$

Q2. Solve the equation $3 x+6=2 x-18$
$\begin{aligned}-2 x & -2 x \\ x+6 & =-18\end{aligned}$

$$
x+6=-18 \quad x=-24
$$

Q3. A dress cost $£ 40$, it was reduced by 15% in the sale, how much is it
now? $10 \%=£ 40 \div 10=£ 4$

$$
5 \%=f 4 \div 2=2
$$

$15 \%=f 4+2=f 6$
$f 40-£ 6=\& 34$
Q4. $2 \frac{2}{3}-\frac{3}{5}=\frac{x^{5}}{3}-\frac{x^{3}}{5} \quad$ Q5. Write O.000091617 lm standard form

$$
\begin{aligned}
& \frac{7}{3}-\overline{5} L M=15 \\
& \frac{40}{15}-\frac{9}{15}=\frac{31}{15}=2 \frac{1}{15}=
\end{aligned}
$$

L.I: Today we will be learning about gradient.
S.C: We will be able to understand what gradient is and how to calculate it.

Homework Due!

Gradient

The gradient of a slope is a measure of its steepness.

A negative gradient means that the slope goes down from left to
right. (This is usually only taken in account when we are dealing with it on a coordinate grid)

Gradient

Gradient is always represented with the letter " m ". It can be written as a simplified fraction or a decimal. When dealing with straight line, we write it as a fraction.

$$
m=\frac{\text { vertical height }}{\text { horizontal distance }}
$$

GRADIENTS LINES EQUATIONS v2.exe

Gradient

I can define gradient and explain to someone how it is calculated.

I can calculate the gradient of slopes of various steepness.

Daily Practice
8.6.2015

Q1. Calculate the length of h
$\cos x=\frac{a}{h} \quad \cos 34^{\circ}=\frac{h}{25.4}$
Q2. Find 34% of $700 \cos 34^{\circ}=h$

$$
10 \%=700 \div 10=70 \quad 1 \%=7
$$

$$
30 \%=70 \times 3=210 \quad 4 \%=7 \times 4=28 \quad 34 \%=210+28=238
$$ Q3. Round 28252 to 3 significant figures

$$
\begin{array}{r}
04.3 \times 4-\frac{(-8) \div 2}{12}-\overline{(-4)} \\
0 \\
=12+4=16 \\
= \\
H \\
H \\
\mathrm{~A}
\end{array}
$$

Q5. $\frac{2}{3} \times \frac{4}{5}=\frac{8}{15}$
(ii)

$d=180^{\circ}-\left(90^{\circ}+53^{\circ}\right)$
$180^{\circ}-143^{\circ}=37$
$180^{\circ}-143^{\circ}=37^{\circ}$
$e=180^{\circ}-\left(37^{\circ}+39^{\circ}\right)$
$180^{\circ}-76^{\circ}=104^{\circ}$
(v)

$\begin{array}{lr}k=180^{\circ}-\left(90^{\circ}+28^{\circ}\right) & 180^{\circ}-65^{\circ}=115^{\circ} \\ 180^{\circ}-118^{\circ}=62^{\circ} & 115^{\circ} \div 2=57.5^{\circ}=m \\ l=180^{\circ}-115^{\circ}=65^{\circ} & \end{array}$

L.I: Today we will be learning how to calculate the gradient given a diagram or points on a coordinate grid.

S.C: I will be able to work out a formula to calculate the gradient given two points.

> to represent this?

$$
\begin{gathered}
\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \\
\frac{v}{h}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{gathered}
$$

Gradient of a straight line

To find the gradient of a line given two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

$$
m=\frac{\text { vertical height }}{\text { horizontal distance }} \quad \text { so } \quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Examples: Find the gradient of the lines joining
(a) $A(2,-1)$ and $B(4,-5)$
(b) $P\left(\begin{array}{c}x_{1} y_{1} \\ -3,-2)\end{array} \quad \begin{array}{c}x_{2} y_{z} \\ \hline\end{array}\right.$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-5-(-1)}{4-2}$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-(-2)}{0-(-3)}$
$=\frac{-4}{2}=-2$
$=\frac{6}{3}=2$
L.I: Today we will be practising questions on working out the gradient of a line.
S.C: We will be able to work out the gradient of a line from a diagram or having been given 2 points.

$$
\text { pg. } 166-171
$$

I can calculate the gradient of a line given two points on the line.

Daily Practice \qquad 10.6.2015

Q1. Multiply out and simplify $3(2 x-1)+4(x+9)$ $6 x-3+4 x+36$
$10 x+33$
Q2. $48 \div 0.008$
$\Rightarrow 0.008 \times 6=0.048$

$\times 1000=48$$\quad$| $\frac{48}{0.008} \times 1000$ |
| :---: |
| Q3. $2 \frac{1}{3}-\frac{1}{5}=\frac{7}{3}-\frac{1}{5}=\frac{35000}{8}$ |

Q4. Calculate the length of a cube with volume $64 \mathrm{~cm}^{3}$
$V=L \times B \times+L^{3} \quad L x L x L=64 \quad \sqrt[3]{64}=4 \mathrm{~cm}$
Q5. Find the value of $3 x^{2}-2 y$ when $x=-3$ and $y=4$
$\frac{3 \times(-3)^{2}}{3 \times 9}-2 \times 4$
$27-8=4$

Abstract

L.I: Today we will be learning about the link between the equation of the line, the gradient and the y - intercept.

S.C: We will be able to interpret the equation of a line and be able to state the equation of a line given its graph.

Equation of a straight line
What is the equation of the line?

Equation of a straight line

Equation of a straight line
$10 \cdot 6 \cdot 15$
The equation of a line is written in the form $y=m x+c$ where m represents the gradient and c represents the y -intercept.

Example: State the equation of the line joining $(-1,4)$ and $(0,-8)$ $y=m x+c$

$$
\begin{array}{ll}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-8-4}{0-(-1)}=\frac{-12}{1}=-12 & y \text {-intropt }=-8 \\
& y=-12 x-8
\end{array}
$$

Daily Practice
12.6.2015

Q1. Calculate the gradient of the line joining $(-1,2)$ and $(4,3)$
$m=\frac{y_{2}-y_{1}}{x_{2} \cdot x_{1}}=\frac{3-2}{4-(-1)}=\frac{1}{5}$
Q2. Find the new value of a house that was purchased for $£ 190000$ and increased in value by 2.5%

| increased in value by 2.5% | | |
| ---: | ---: | ---: | ---: |
| $1 \%=1900 \quad 0.5 \%=1900 \div 2=950$ | $f 190000$ | |
| $2 \%=1900 \times 2=3800 \quad 2.5 \%=3800$ | +4750 | |
| Q3. Write 18 out of 25 as a percentage+950
 47750 | $\underline{f 194750}$ | | $\frac{18}{25} \times 4=\frac{72}{100}=72 \%$

Q4. $1 \frac{2}{5} \div \frac{3}{4}=1 \frac{2}{5} \times \overline{\overline{4}}=\frac{7}{5} \times \frac{4}{3}=\frac{28}{15}=1 \frac{13}{15}$

$$
15
$$

L.I: Today we will be continuing to learn how to create an equation given two points or the graph of a line.

Equation of a straight line
State the equations of the lines shown

How do you find the equation of a line in the form $y=m x+c$ and you have been given two points on the line?

Equation of a straight line
How do you find the equation of a line in the form $y=m x+c$ and you have been given two points on the line?

Equation of a straight line
Algebraic Method:

- Work out the gradient.
- Substitute the gradient and one of your coordinates into the equation and solve for c .
- State the equation.

Example: State the equation of the line joining $(-2,3)$ and $(2,5)$

Equation of a Line
$12.6 \cdot 15$
There are some special cases that aren't in terms of both y and x

These are vertical and horizontal lines and the x and y axes.

Vertical lines are always of the form $\mathrm{x}=\mathrm{a}$
Horizontal lines are always of the form $y=b$
The x - axis has the equation $y=0$
The y - axis has the equation $x=0$

$$
\begin{array}{ll}
\text { Daíly Practice } & 15 \cdot 6.2015 \\
\hline
\end{array}
$$

Q1. Solve the equation $3(2 x-1)=2(x-4)$
$6 x-3=2 x-8$
$4 x-3=-8$
$\begin{aligned} 4 x-3 & =-8 \\ 4 x & =-5 \quad x=-\frac{5}{4} \quad \text { or }-1 \frac{1}{4}\end{aligned}$
Q2. $-3-(-17)+\underbrace{-3+17}_{14}+10$ of $50, ~=24$
Q3. $1 \frac{2}{3} \times \frac{2}{5}=\frac{8}{3} \times \frac{2}{5}=\frac{2}{3}$

Q4. 0.04×0.2
$0.008 \longrightarrow \frac{4}{100} \times \frac{2}{10}=\frac{8}{1000}=0.008$

L:I: Today we will be learning how to draw a straight line given its equation.
S.C: I will be able to create a table of values and draw a line given its equation.

Homework Online due Friday 19.6.15

Drawing a line given its equation
$15 \cdot 6 \cdot 15$
Given the equation of a straight line in the form $y=m x+c$
Simply substitute various values in for x and then work out the corresponding y. This will give you coordinates.

We call this making a table of values.

If the equation requires finding half of x, choose even numbers as your x values.

Drawing a straight line using its equation

Example:

1. Draw the line $y=x+1$

Drawing a straight line using its equation

Using a table of values, draw graphs of the following:
(a) $y=-3 x+4$
(b) $y=0.5 x-2$
(c) $y=-x+2$
L.I: Today we will be completing an end of topic task for the straight line.
S.C: We will be able to design a check-up for the Straight Line and a marking scheme.

Homework Online due 19.6.2015

Drawing a straight line using its equation
Questions: Draw the following given their equations
State the gradient and the coordinate where the line crosses the y-axis for each

1. $y=2 x$
2. $y=5 x-1$
3. $y=0.5 x+2$
4. $y=-2 x+1$
5. $y=x-5$
6. $y=-x+3$

I can create a table of values given
the equation of a line.

I can plot the coordinates and make the graph of a straight line.

Daily Practice

\qquad 22.6.15

Q1. Multiply out and simplify $7(3 x-1)-(x-2)+7 x$ $21 x-7-x+2+7 x \quad 27 x-5$

Q2. $2 \frac{1}{3}-\frac{7}{8}=\frac{7}{3}-\frac{7}{8}=\frac{56}{24}-\frac{21}{24}=\frac{35}{24}=1 \frac{11}{24}$

Q3. State the gradient of the line joining $(2,-1)$ and $(3,-2)$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-(-1)}{3-2}=\frac{-1}{1}=-1
$$

Q4. State the gradient and the y-intercept of the line $y=2 x-2$

$$
m=2 \quad c=-2
$$

