Daily Practice 18.4.2018
Q1. Multiply out and simplify $(x-1)(2 x+3)$
Q2. Factorise $4 x^{2}-y^{2} \quad \begin{aligned} 2 x^{2}+3 x \\ 2 x^{2}+2 x-3 \\ 2\end{aligned}$
Q2. Factorise $4 x^{2}-y^{2}(2 x-y)$

$$
(2 x+y)(2 x-y)
$$

Q4. Calculate the length of the minor
$\operatorname{arc} A C$

$$
\frac{x}{360^{\circ}} \times \pi D
$$

$$
\frac{131^{\circ}}{360^{\circ}} \times \pi \times 38=43.44 \mathrm{~mm}(2 \mathrm{dp})
$$

Squaring out brackets
Before we learn to complete the square, we first need to practise squaring out brackets.

Multiply out and simplify the following:
$(x-n(x-)$
$\begin{array}{cccc}(x-1)^{2} & (x+3)^{2} & (2 x+4)^{2} \\ x^{2}-x-x+1 & x^{2}+6 x+9 & 4 x^{2}+16 x^{2}+16 & 25-10 x+x^{2}\end{array}$
$x^{2}-2 x+1$

Completing the Square
$a x^{2}-b x+c$
Completing the square means writing a quadratic/trinomial expression in the form $(x+p)^{2}+q$

Writing it in this form is useful for when we are working with parabolas or solving quadratic equations.

Completing the Square
Examples: Write these expressions in the form $(x+p)^{2}+q$

Today we will be learning to complete the square.

Daily Practice

12.4 .2018

Q1. Multiply out and simplify $(2 x-1)^{2}=4 x^{2}-4 x+1$
Q2. Factorise $x^{2}-7 x+12 \quad(x-3)(x-4)$
Q3. Calculate the area of a quarter circle with radius $5 \mathrm{~cm} \quad A=\frac{1}{4} \times \pi \times 5^{2}$
Q4. Calculate the capacity of a cylinder with diameter of base 20 cm
and height 48 cm
3) $x^{2}-14 x+10$
$\frac{(x-7)^{2}}{\downarrow}-39$
$x^{2}-14 x+49$

Today we will be continuing to learn how to complete the square.

Completing the Square
Write the following quadratics in the form $(x+a)^{2}+b$
(a) $x^{2}+4 x+3$
(g) $x^{2}-12 x-15$
(b) $x^{2}+8 x-13$
(h) $x^{2}+22 x-4$
(c) $x^{2}+6 x+5$
(d) $x^{2}-4 x+5$
(e) $x^{2}-8 x+9$
(i) $x^{2}+3 x-5$
(j) $x^{2}-11 x+12$
(k) $m^{2}-100 m+14$
(f) $x^{2}-2 x-5$
(m) $n^{2}-15 n+7.5$

Completing the Square

Write the following quadratics in the form $(x+a)^{2}+b$
(a) $x^{2}+4 x+3=(x+2)^{2}-1$
(b) $x^{2}+8 x-13=(x+4)^{2}-29$
(c) $x^{2}+6 x+5=(x+3)^{2}-4$
(d) $x^{2}-4 x+5=(x-2)^{2}+1$
(e) $x^{2}-8 x+9=(x-4)^{2}-7$
(f) $x^{2}-2 x-5=(x-1)^{2}-6$
(9) $\begin{aligned} & x^{2}-12 x-15 \\ & (x-6)^{2}-51\end{aligned}$
(h) $x^{2}+22 x-4$
(i)) $\begin{aligned} & x^{2}+3 x-5 \\ & \left(x+\frac{3}{2}\right)^{2}-\frac{29}{4}\end{aligned}$
(j) $x^{2}-11 x+2$

Completing the Square
Completing the square when the coefficient of x^{2} is -1

* First factorise by taking out -1 .
* Then complete as normal.
* Then multiply back n the -1 .

Examples

$$
\begin{array}{rr}
\text { (a) }-x^{2}+6 x-5 & \text { (b) }-x^{2}-8 x+2 \\
-1\left[x^{2}-6 x+5\right] & -1\left[x^{2}+8 x-2\right] \\
-1\left[(x-3)^{2}-4\right] & -1\left[(x+4)^{2}-18\right] \\
=\frac{-(x-3)^{2}+4}{\overline{0}} & \text { (c) }-x^{2}-18 x-9 \\
\frac{4-(x-3)^{2}}{} & -\left[x^{2}+18 x+9\right] \\
& -\left[(x+9)^{2}-72\right] \\
&
\end{array}
$$

