S3 (3.1) Completing the Square.notebook

April 30, 2018

Daily Practice	18.4.2018
Q1. Multiply out and simplify $(x - 1)(2x + 3)$	
Q2. Factorise $4x^2 - y^2$ (2x + y)(2x - g) Q3. Simplify fully $\frac{2x+3}{2x^2+x-3} = \frac{2x+3}{2x^2+x-3} = \frac{2x+3}{2x^2+x-3}$	1
$2x^2 + x - 3$	_
Q4. Calculate the length of the minor 7	
arc AC 360° × 17 × 36= 4344 (124 p)	

Today we will be learning to complete the square.

Squaring out brackets

Before we learn to complete the square, we first need to practise squaring out brackets.

Multiply out and simplify the following: $(x-0)^{(x-1)}$

Completing the Square

Completing the square means writing a quadratic/trinomial expression in the form $(x + p)^{2} \! + \! q$

ax2+

Writing it in this form is useful for when we are working with parabolas or solving quadratic equations.

Completing the Square

Examples: Write these expressions in the form $(x \ + \ p)^2 \ + \ q$

÷

S3 (3.1) Completing the Square.notebook

Completing the Sa	uare

Today we will be continuing to learn how to complete	1
the square.	

Write the following quadratics in the form $(x + a)^2 + b$		
(a) $x^2 + 4x + 3$	(g) x² - 12x - 15	
(b) $x^2 + 8x - 13$	(h) x ² + 22x -4	
(c) $x^2 + 6x + 5$	(i) $x^2 + 3x - 5$	
(d) $x^2 - 4x + 5$	(j) x² - 11x + 12	
	(k) m ² - 100m + 14	
(e) $x^2 - 8x + 9$	(1) k ² – 20k + 3	
(f) $x^2 - 2x - 5$	(m) n ² - 15n + 7.5	

Completing the Square

Write the following quadratics in the form $(x + a)^2 + b$

(a)
$$x^{2} + 4x + 3 = (x+2)^{2} - 1$$

(b) $x^{2} + 8x - 13 = (x+4)^{2} - 29$
(c) $x^{2} + 6x + 5 = (x+3)^{2} - 4$
(d) $x^{2} - 4x + 5 = (x-2)^{2} + 1$
(e) $x^{2} - 8x + 9 = (x-4)^{2} - 7$
(f) $x^{2} - 125$
(g) $x^{2} + 22x - 44$
(h) $x^{2} + 22x - 44$
(k) $x^{2} + 22x - 44$
(k) $x^{2} + 3x - 55$
(x + $\frac{2}{2})^{2} - \frac{29}{6}$
(j) $x^{2} - 11x + 2$
(j) $x^{2} - 11x + 2$

Completing the Square.....

Completing the square when the coefficient of $x^2 \mbox{ is --1}$

₩ First factorise by taking out -1. * Then complek as normal. * Then multiply back in the -1.

Examples

1

$$\begin{array}{c} (a) -x^{2} + 6x - 5 \\ -1 \int_{\mathbb{R}^{2}} -6x + 5 \\ -1 \int_{\mathbb{R}^{2}} -6x + 5 \\ -1 \int_{\mathbb{R}^{2}} -6x + 5 \\ -1 \int_{\mathbb{R}^{2}} -4x + 5 \\ -1 \int_{\mathbb{R}^{2}} -4x + 5 \\ -1 \int_{\mathbb{R}^{2}} (x + 4)^{2} - 18 \\ -1 \int_{\mathbb{R}^{2}} (x + 4)^{2} - 18 \\ -1 \int_{\mathbb{R}^{2}} (x + 4)^{2} - 18 \\ -1 \int_{\mathbb{R}^{2}} (x + 4)^{2} + 18 \\ -1 \int_{\mathbb{R}^{2}} (x + 4)^{2} + 18 \\ -1 \int_{\mathbb{R}^{2}} (x + 4)^{2} + 18 \\ -1 \int_{\mathbb{R}^{2}} (x + 4)^{2} - 18$$