Daily Practice 2.11 .2017

Q1. Round 26.28 to the nearest unit
$\longrightarrow 26$
Q2. There are 3.06×10^{21} atoms in one gram of gold, how many atoms are in 500 g
of gold? $\quad \begin{aligned} 3.06 & \times 10^{2} \times 500 \\ & =1.53 \times 10^{24}\end{aligned}$
Today we will be learning about indices
Q3. What is 64.5% written as a decimal?
$\div 100=0.645$
Q4. Write 30 out of 70 as a percentage
$30 \div 70 \times 100=42.9 \%$
Q5. Multiply out and simplify $5(2 x-1)-1(x-3)$
$10 x-5-x+3=9 x-2$
Q6. What is the valueof V if $V=p^{2}-3 p$ when $p=-5$?
$V=(-5)^{2}-(3 x-5)$
$25+15=40$

Indices

An index (pl. indices) or power represents how many times a number is being multiplied by itself.
a^{b} is pronounced "a to the power of b"

Examples: Find the value of
(a) $\begin{aligned} 5^{3} & =5 \times 5 \times 5 \\ & =125\end{aligned}$
(b) $\begin{aligned} 2^{5} & =2 \times 2 \times 2 \times 2 \times 2 \\ & =32\end{aligned}$

Indices

Examples: Simplify the following
(a) $4^{3} \times 4^{7}$
(b) $k^{3} \times k^{4}$
(c) $a^{5} \times a^{7} \times a$
(d) $\mathrm{d}^{2} \times \mathrm{d}^{-4}$

Indices

1. Evaluate the following
(a) $7^{3}=343$
(b) $3^{5}=243$ (c) $4^{3} \equiv 64$
(d) $12^{2}=144$
(e) ${ }^{5} 9049$
(f) $32^{3} \times 2^{2}=2^{5}$
(g) $\begin{aligned} & 3^{3} \times 3^{4} \times 3 \\ & 6561\end{aligned}$
(h) $\begin{aligned} & 5^{3} \times 5^{4} \\ & 78125\end{aligned}$
(i) $10^{3} \times 10^{3} \times 10^{=}$
10^{7}
2. Write a general rule for multiplying numbers with powers
$x^{a} \times x^{b}=x^{a+b}$

Write each of the following in its simplest index form.

| (a) $3^{4} \times 3^{2}$ | (b) 2×2^{3} | (c) $10^{5} \times 10^{2}$ | (d) $8^{3} \times 8^{5}$ |
| :--- | :--- | :--- | :--- | :--- |
| (e) $7^{6} \times 7$ | (f) $5^{4} \times 5^{4}$ | (g) $9^{6} \times 9^{2}$ | (h) $6^{8} \times 6^{5}$ |
| (i) $x^{3} \times x^{5}$ | (j) $c^{2} \times c^{9}$ | (k) $a^{2} \times a^{12}$ | (l) $y^{5} \times y^{5}$ |
| (m) $b^{10} \times b^{30}$ | (n) $p \times p^{9}$ | (o) $d^{2} \times d^{4}$ | (p) $q^{11} \times q^{9}$ |

(a) $3^{4} \times 3^{2}$
(b) 2×2^{3}
(c) $10^{5} \times 10^{2}$
(d) $8^{3} \times 8^{5}$
(e) $7^{6} \times 7$
(j) $c^{2} \times c^{9}$
(o) $d^{2} \times d^{4}$
(p) $q^{11} \times q^{9}$

$$
\begin{aligned}
& 2 p^{3} \times 5 p^{2}=10 p^{5} \\
& 10 p^{7} \times 3 p^{8} \times 2 p^{3}=
\end{aligned}
$$

Daily Practice
3.11 .2017

Q1. Find the value of a house that was worth $£ 48000$ and appreciated by $4.5 \% \quad 1 \%$ of $48000=480 \quad 1920$
$4 \%=\frac{480}{\frac{x}{1920}} \quad E 48000+E \frac{+240}{2160}=E S O 160$
Q2. Multiply out and simplify $2(x-3)+4(x+1)$

$$
\begin{gathered}
2 x-6+4 x+4 \\
6 x-2
\end{gathered}
$$

Q3. Solve $\frac{x+5}{3}=-1 \quad \quad 6 x-2$

Multiplying with_Indices
Multiplying terms with powers

Examples:

1. $3 a^{2} \times 7 a$
$-21 a^{3}$

2. $5 a^{2} b \times 4 b^{3}$
$=20 a^{2} b^{4}$
3. (a) $3 a^{2} \times a^{3}$
(b) $4 m^{3} \times 2 m^{5}$
(c) $5 m^{-3} \times 2 m^{5}$
(d) $7 y^{10} \times 4 y^{2} \times 5 y^{-3}$
(e) $-2 k^{2} y \times 4 y^{2}$
(f) $10 k^{2} m^{3} \times 6 k^{-3} m^{6}$
(g) $2 m^{3} \times 7 m^{-3} \times 4 m^{6} \times-5$
4. (i) $3 a(2 a+1)$
(ii) $5 a^{2}\left(6 a^{3}-2 a^{-2}\right)$
(iii) $-4 x y\left(2 x^{2}-3 x^{5} y^{-1}\right)$
(iv) $a^{0.5}\left(2 a^{1.5}-a^{-0.5}\right)$
(v) $5 g^{2} h^{2}\left(4 g^{-7}-2 h^{6}\right)$

Q1. Calculate the value of a car that was worth $£ 4500$ and depreciated
by 7% per annum for 2 years
$4500 \div 100 \times 7=315 \quad 4185 \div 100 \times 7=292.95$
$\begin{array}{ll}4500 \div 100 \times 7=315 & 4185-292.95=8899.05\end{array}$
Q2. Solve the equation $\frac{2 x-5}{x^{2}}+\frac{x}{2}=3$
$\begin{aligned} & \text { *3 } \\ & 4 x-10\end{aligned}$
$\frac{4 x-10}{6}+\frac{3 x}{6}=3$
$=\frac{7 x-10}{6}=3 \quad 7 x-10=18 \quad 7 x=28 \quad x=4$
Q3. Calculate the length of $A B$ $x^{2}=75^{2}-4.5^{2}$
$x^{2}=36$
$x=6 \quad A B=6 \times 2=12 m$

Today we will be continuing to learn how to multiply and divide terms with powers.

Dividing with indices
Work out the following and see if you notice a pattern
(i) $6^{4} \div 6^{2}$
(ii) $10^{3} \div 10^{2}$
(iii) $\begin{aligned} & 2^{7} \\ &=2^{5} \\ &\end{aligned}$
$=36=6^{2}$
$=10^{\prime}$
$=2^{2}$

The rule for dividing with power is

$$
x^{a} \div x^{b}=x^{a-b}
$$

If the x term has a coefficient, divide the coefficients as normal.
number in front of vartable
e.g. Coefficient of $7 x^{2}$ is 7

Dividing Numbers with powers

1. Write each of the following in its simplest index form

From Pegasys bookle \dagger
(a) $2^{8} \div 2^{3}$
(b) $5^{4} \div 5^{2}$
(c) $12^{9} \div 12^{6}$
(d) $7^{11} \div 7^{4}$
$\begin{array}{llll}\text { (e) } 20^{5} \div 20 & \text { (f) } 8^{8} \div 8^{4} & \text { (g) } 3^{18} \div 3^{3} & \text { (h) } 4^{15} \div 4^{13}\end{array}$
$\begin{array}{ll}\text { (i) } x^{7} \div x^{2} & \text { (j) } \quad a^{9} \div a^{5}\end{array}$
(k) $y^{20} \div y^{10} \quad$ (l) $b^{4} \div b^{1}$
(m) $p^{12} \div p^{11}$
(n) $c^{7} \div c^{7}$
(o) $q^{8} \div q^{2}$
(p) $d^{4} \div d$
(q) $\frac{x^{9}}{x^{3}}$
(r) $\frac{a^{8}}{a^{2}}$
(s) $\frac{m^{14}}{m}$
(t) $\frac{s^{7}}{s^{7}}$
(u) $\frac{d^{20}}{d^{12}}$
(v) $\frac{y^{100}}{y^{10}}$
(w) $\frac{t^{100}}{t}$
(x) $\frac{w^{10}}{w^{0}}$
2. (a) $\frac{14 x^{7}}{2 x^{-3}}$
(b) $\frac{36 x^{15}}{12 x^{5}}$
(c) $\frac{6 x^{9}}{8 x^{-3}}$
(d) $\frac{48 x^{9}}{8 x^{9}}$
(e) $\frac{2 x^{2} \times x^{3} \times 6 x}{4 x}$
(f) $\frac{10 x^{2} \times 2 x^{2}}{10 x^{-4}}$
(g) $\frac{1 x}{10 x^{-4}}$

Daily Pracfice

8.11 .2018

Q1. Round 41226 to 3 significant figures
Q2. Multiply out and simplify $2 f-3(f-4)$
Q3. $45.6 \times 500 \frac{\frac{x 5}{28.0}}{3} \times 100=22800$
Q4. Write 6000000 in scientific notation

$$
6 \times 10^{6}
$$

Q5. Solve $\frac{x-3}{x^{6}}+\frac{4 x}{3}=15$

Dividing with indices
Examples: Simplify the following

1. $7^{5} \div 7^{3}$
2. $m^{7} \div m^{3}$
3. $16 m^{8} \div 2 m^{2}$
$=7^{2}$
$=m^{4}$
$=8 m^{6}$
4. $\frac{12 h^{2}}{2 h^{-5}}=6 h^{7}$
5. Wiite each of the following in its simplest index form.

From Pegasys booklet
(a) $2^{8} \div 2^{3}<2^{5}$ (b) $5^{4} \div 5^{2}=5^{2}$ (c) $12^{9} \div 12^{6}=12^{3}$ (d)
(e) $\quad 20^{5} \div 20-20^{4}$ (f) $\quad 8^{8} \div 8^{4}=8^{4}$ (g) $\quad 3^{18} \div 3^{3}=3^{15}$ (h) $\quad 4^{15} \div 4^{13}=4^{2}$
(i) $x^{7} \div x^{2}=x^{5}$ (j) $a^{9} \div a^{5}=a^{4}$ (k) $y^{20} \div y_{e}^{10} y^{10}$ (l) $b^{4} \div b^{1}=b^{3}$
(m) $p^{12} \div p_{11}^{11} \boldsymbol{p}^{1} \quad$ (n) $\quad c^{7} \div c^{7} \operatorname{lorc}^{\circ(0)} \quad q^{8} \div q^{2} q^{\text {b }}$ (p) $d^{4} \div d \equiv d^{3}$
(q) $\frac{x^{9}}{x^{5}}=x^{6} \quad$ (r) $\quad \frac{a^{8}}{a^{2}}=a^{6} \quad$ (s) $\quad \frac{m^{14}}{m}=m^{13} \quad$ (t) $\quad \frac{s^{7}}{s^{7}}=S^{\circ}$ or I
(u) $\quad \frac{d^{20}}{d^{12}}=d^{8} \quad$ (v) $\quad \frac{y^{100}}{y^{10}}=\boldsymbol{g}^{90}$ (w) $\quad \frac{t^{100}}{t}=t^{9 Q}$
(x) $\frac{w^{10}}{w^{0}}=w^{10}$
2. (a)
$\frac{14 x^{7}}{2 x^{-3}}=7 x^{(10} \frac{36 x^{15}}{12 x^{5}}=3 x^{10} \quad \frac{6 x^{9}}{8 x^{-3}}$
$\frac{3}{4} x^{(d)} \frac{48 x^{9}}{8 x^{9}}=6 x^{\circ}$ or b
(e) $\frac{2 x^{2} \times x^{3} \times 6 x}{4 x}$
(f) $\frac{10 x^{2} \times 2 x^{2}}{10 x^{-4}}$
(g) $\frac{1 x}{10 x^{-4}}$
$=3 x^{5}$
$=2 x^{8}$
$\frac{1}{10} x^{5}$

Today we will be learning about the power of zero and negative powers.

The power of zero

Any number to the power of zero is one.

$$
a^{0}=1
$$

Examples: Simplify
(i) $2 x^{5} \times 3 x^{-5}$
$=6 x^{\circ}$
(ii) $\frac{12 p^{8}}{3 p^{8}}=4 p^{\circ}=4$
$=6$

Negative Powers

Write the following with positive powers
(a) $\begin{aligned} & k^{-1} \\ = & \frac{1}{k}\end{aligned}$
(b) $\frac{m^{-5}}{m^{5}}$
$=\frac{m^{5}}{}$
(c) $3 m^{-3}$
$=\frac{3}{m^{3}}$
(d) $2 m^{-1}$
$=\frac{2}{m}$
(e) $\frac{1}{2} m^{-1}$
$=\frac{1}{2 m}$
(f) $\frac{2}{3} m^{-2}$
(g) $\frac{8}{3} m^{-10}$
(h) $2 k^{2} m^{-10}$
(i) $j^{-5} h^{-7}$
$=\frac{1}{j^{5} h^{7}}$
(j) $10 p^{-2} h^{-4}$
$\frac{2}{\underline{m^{m}}}$
$\frac{8}{3 m^{10}}$
$=\frac{2 k^{2}}{m^{10}}$
$=\frac{10}{\underline{p^{2} h^{4}}}$

Today we will be learning how to put a power to a power.
$\left(2^{2}\right)^{7}$

$$
\begin{aligned}
& \left(2^{2}\right)^{3}=2^{2} \times 2^{2} \times 2^{2}=2^{6} \\
& \left(2^{5}\right)^{3}=2^{5} \times 2^{5} \times 2^{5}=2^{15}
\end{aligned}
$$

\qquad

A number with a negative power is the same as 1 over the number with a positive power.

$$
a^{-b}=\frac{1}{a^{b}}
$$

Examples: Write with positive powers
(a) $3^{-2}=\frac{1}{3^{2}}$
(b) $4^{-3}=\frac{1}{4^{3}}$
(c) $a^{-4}=\frac{1}{a^{4}}$
(e) $\frac{1}{3} a^{-4}=\frac{1}{3 a^{4}}$
$\frac{1}{3} \times \frac{1}{a^{4}}$

$\frac{3}{1} \times \frac{1}{a^{5}}$

(d) $3 a^{-5}=\frac{3}{a^{5}}$
\qquad

Putting a power to a power

$$
\left(a^{k}\right)^{b}=a^{k b}
$$

Examples:

$$
4^{4^{3} p^{6}}
$$

(1) $\left(3^{2}\right)^{5}=3^{10}$
(ii) $\begin{aligned} & \left(p^{4}\right)^{8} \\ = & p^{32}\end{aligned}$
(iii) $\begin{aligned} & \left(4 p^{2}\right)^{3} \\ & 4 p^{2} \times 4 p^{2} \times 4 p^{2} \\ & =64 p^{6}\end{aligned}$

Putting a power to a power
Write each of the following in its simplest index form.
(a) $\left(3^{2}\right)^{4}$
(b) $\left(8^{2}\right)^{2}$
(c) $\left(10^{3}\right)^{2}$
(d) $\left(2^{2}\right)^{5}$
(e) $\left(4^{5}\right)^{3}$
(f) $\left(1^{7}\right)^{2}$
(g) $\left(12^{3}\right)^{3}$
(h) $\left(5^{5}\right)^{5}$
(i) $\left(x^{4}\right)^{2}$
(j) $\quad\left(v^{8}\right)^{5}$
(k) $\left(a^{3}\right)^{7}$
(I) $\left(m^{4}\right)^{4}$
(m) $\left(b^{3}\right)^{6}$
(n) $\left(p^{5}\right)^{3}$
(o) $\left(k^{5}\right)^{20}$
(p) $\left(z^{6}\right)^{0}$
(q) $\left(3 x^{2}\right)^{2}$
(r) $\left(4 b^{3}\right)^{4}$
(s) $\left(10 a^{-2}\right)^{5}$

Putting a power to a power

$$
\frac{\left(p^{2} \times 2 p \times p^{3}\right)^{5}}{p^{7}}
$$

Putting a power to a power
Write each of the following in its simplest index form
(a) $\left(3^{2}\right)^{4}=3^{8}$ (b) $\quad\left(8^{2}\right)^{2}=8^{4}$ (c) $\quad\left(10^{3}\right)^{2}=10^{6}$ (d) $\quad\left(2^{2}\right)^{5}=2^{10}$
(e) $\left(4^{5}\right)^{3}=4^{15}$ (f) $\left(1^{7}\right)^{2}=\left.\right|^{14}$ (g) $\left(12^{3}\right)^{3}=12^{9}$ (h) $\left(5^{5}\right)^{5}=5^{25}$
(i) $\quad\left(x^{4}\right)^{2}=x^{8} \quad$ (j) $\quad\left(y^{8}\right)^{5}=y^{40}$ (k) $\quad\left(a^{3}\right)^{7}=q^{21} \quad$ (l) $\quad\left(m^{4}\right)^{4}=m^{16}$
(m) $\quad\left(b^{3}\right)^{6}=b^{18}$ (n) $\left(p^{5}\right)^{3}=p^{15}$ (0) $\quad\left(k^{5}\right)^{20}=k^{100}$ (p) $\quad\left(z^{6}\right)^{0}=z^{0}=1$
(q) $\left(3 x^{2}\right)^{2} \quad(r)\left(4 b^{3}\right)^{4}$
$=9 x^{4} \quad 256 b^{12}$
(s) $\left(10 a^{2}\right)^{5}$
$100000 a^{-10}$

$$
=\frac{100000}{9^{10}}
$$

From Pegasys booklet

Applying the rules of indices to questions From Pegasys booklet Simplify these expressions.
(a) $2 a^{3} \times 5 a^{5}$
(b) $7 x \times 9 x^{8}$
(c) $12 p^{7} \div 4 p^{4}$
(d) $50 b^{12} \div 10 b^{6}$
(e) $3 y \times\left(2 y^{2}\right)^{3}$
(f) $\left(4 q^{3}\right)^{2} \times 5 q^{4} \quad$ (g)
$\left(4 c^{3}\right)^{3} \div 8 c^{2}$
(h) $72 z^{12} \div\left(3 z^{4}\right)^{2}$
(i) $k^{2}\left(k^{3}+k^{5}\right)$
(j) $m^{5}\left(m^{2}-m^{3}\right) \quad$ (k)
$2 x^{4}\left(x^{3}+3 x^{2}\right)$ (l)
$5 a^{5}\left(2 a^{2}-3 a^{3}\right)$
(m) $\frac{x^{5} \times x^{4}}{x^{6}}$
(n) $\frac{\left(m^{5}\right)^{4}}{m^{6}}$
(o) $\frac{5 c^{3} \times 4 c^{7}}{2 c^{6}} \quad$ (p) $\quad \frac{\left(3 q^{3}\right)^{2} \times 4 q^{4}}{6 q^{7}}$
(q) $\frac{\left(3 x y^{5}\right)^{3}}{9 x^{2} y}$
(r) $\frac{\left(2 a^{2} b^{5}\right)^{6}}{(4 a b)^{2}}$
(s) $\frac{\left(4 p^{4}\right)^{3}}{2 p^{3} \times 8 p^{6}} \quad$ (t) $\quad \frac{\left(2 a b^{3}\right)^{5}}{3 a^{2} b \times 4 a b^{2}}$
$\begin{array}{lll}\text { (u) } \frac{x^{5} \times 2 x^{-3} \times 4 x^{2}}{2 x^{-8}} & \text { (v) } \frac{15 x^{\frac{3}{2}} \times 4 x^{-1} \times 2 x^{\frac{1}{2}}}{10 x^{-1}} & \text { (w) } \frac{\left(5 x^{-4} \times 6 x^{-1} \times 4 x^{10}\right)^{3}}{4 x^{2}}\end{array}$

Daily Practice

10.11.2017

Q1. Round 17183 to 2 significant figures
Q2. The diagram shows a circle inscribed within a square.
Write down an expression for the shaded area
$A=x^{2}-\left(\frac{x}{2}\right)^{2} x \pi$
$=x^{2}-\frac{\pi x^{2}}{4}$
Q3. $\frac{3}{8} \times \frac{2}{5}=\frac{6}{40}=\frac{3}{20}$

Q4. Simplify $\frac{2 m^{2} \times 5 m}{m^{4}}=\frac{10 m^{3}}{m^{-4}}=10 m^{7}$
xcm
(q) $\frac{\left(3 x y^{5}\right)^{3}}{9 x^{2} y}=3 x{ }^{(\mathrm{r})}{ }^{14}$
(u) $\frac{x^{5} \times 2 x^{-3} \times 4 x^{2}}{2 x^{-8}} \quad$ (v) $\frac{15 x^{\frac{3}{2}} \times 4 x^{-1} \times 2 x^{\frac{1}{2}}}{10 x^{-1}}$ (w) $\left.\frac{\left(5 x^{-4} \times 6 x^{-1} \times 4 x^{10}\right)^{3}}{4 x^{2}}\right)$

$$
\frac{32 a^{5} b^{15}}{12 a^{3} b^{3}}
$$

$=\frac{8}{3} a^{2} b^{12}$

