November 24, 2015

Scientific notation (also known as standard form) is a way of writing

Scientific Notation

M. HTh TTh Th

10¹ = 10

very long numbers using the power of 10.

10² = **100**

Today we are going to learn about scientific notation.

Homework Due!

Scientific Notation

26.10.15

1000 or 103

10⁵ = (00 000 10⁻³ = 0 · 00 1

HTU•thth

When writing numbers in scientific notation, we are writing them so that there is a single non – zero digit in front of the decimal point.

For numbers greater than 1, b > 0. For numbers less than 1, b < 0.

Scientific Notation Examples: Write the following in scientific notation 2.00525 (d) 0.0009 3·25×10 ℃ (b) 3 215 000 (c) 0.00325 **3 215 х Ю 3 25 х Ю** (a) 48 000 4 4 8 × 10⁴ 9×10 ☆ Write the following numbers in normal form (in full) (e) 5.1×10^3 (g) 1.093 x 10⁸ (f) 2.83 x 10⁻⁷ 51x10×10×10 283+10+10+10+10 90 300 000 +10+10+10 - 5100 0.00000283

Scientific Notation duratic		Ex. 5B Q5
,		Ex. 5D Q4, 5
Examples:		Ex. 5E Q1 a, d
1. The area of the surface of Approximately 29.2% of th 0.292 x	the Earth is about 5.09 is is land. How much of	Q2-6 5 x 10° square miles. the surface area is land? 487 740 000 sq

= 1.48774 × 109 mile

2. The mass of an oxygen atom is 2.7×10^{-23} grams. The mass of an electron at rest is approx. 30 000 times smaller than this. Calculate the mass of an electron at rest 2.3×10^{-23} and 3.4×10^{-23}

Daily Practice 28.10.15

Q1. Round 26.28 to the nearest unit \rightarrow 26

Q2. There are 3.06 x 10²¹ atoms in one gram of gold, how many atoms are in 500g of gold? $3 \cdot 06 \times 10^{21} \times 500 = 1 \cdot 53 \times 10^{21}$

Q3. What is 64.5% written as a decimal? = Q.645

Q4. Write 30 out of 70 as a percentage $30 \div 70 \times 100 = \frac{42 \cdot 8 \frac{7}{6}}{100}$

V= 40

Q5. Multiply out and simplify 5(2x - 1) - 1(x - 3) (0x - 5) - x + 3Q6. What is the valueof V if V = p² - 3p when p = -5? $\sqrt{r} (-5)^2 - 3(-5)$ $\sqrt{c} 25 + 15$

Indices	28-10-15
An index (pl. indices) o being multiplied by itse	r power represents how many times a number is If.
a ^b is pronounced "a to t 4 ³ = 4×4 × 4 = 6	he power of b"
Examples: Find the value (a) 5 ³ • 5 x 5 x 5 125	eof (b) 2° • 2x2x2x2x2 = 32
ຊໍາ ລຸກລ	x 2 x 3x3x2x2x2 = 2*
3 3x3z	³ x 3 ⁴ x 3 ⁴ x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3
343	వీ x రో x 3ీ x న్ బ x నిగర్గి విశ్వస్త్రి వే x న్
0	دُx a x a ⁴ = a ² a ² x b ² x a ⁵ x b ⁶ = a ² b ⁸
	3 x a² x a² x da ⁶ = 60"
	34° x 26° x 0. x 56°
	30° 1065
	200.6

Today we will be continuing to practise questions on scientific notation.

A Success?
A
I can explain what scientific notation is and why it is used.
I can write numbers in scientific notation.

I can convert numbers in scientific notation back to normal form.

Today we will be learning about indices.

Laws of Indices

There are various rules that help you work out problems with indices in them.

1. Multiplying terms with powers

Multiplying terms with powers

Examples: Multiply the following

Daily Practice 30.10.2015 a). Round 6177 to 1 significant figure 6000a2. A group of witches are ages 25, 37, 48, 43, 64, 77 and 62. alculate their mean age a3. Solve $\frac{1}{7}(7x-1) < x+17$ 3.32522773 a4. Ghostbusters blasted the ghost population (12000) by 30% every where there after 3 mins? 100% - 30% = 70% Room x 0.7³ - 4116 ghosts

Today we will be continuing to learn how to multiply indices.

Indices

A number with a negative power is the same as 1 over the number with a positive power. $2 \times 10^{2} = 2 \times 10 \times 10^{2}$

$$\begin{array}{c} 2 \times 10^{-2} = 2 \div 10 \div 10 \\ = 2 \div 10^{2} = \frac{2}{10^{2}} \\ = 2 \times 10^{2} \\ = 2 \times 10^{2} \end{array}$$

Examples:

(a)
$$3^{-2} = \frac{1}{3^{2}}$$
 (b) $4^{-3} = \frac{1}{4^{3}}$ (c) $a^{-4} = \frac{1}{4^{4}}$ (d) $3a^{-6} = 3xa^{4}$
 $= \frac{1}{4}$ $= \frac{3}{4^{5}}$
(e) $\frac{1}{3}a^{-4} = \frac{1}{3a^{4}}$
 $\frac{1}{3}xa^{4}$

Multiplying Numbers with powers

Write each of the following in its simplest index form. (a) $3^4 \times 3^2 = 3^6$ (b) $2 \times 2^3 = 2^4$ (c) $10^5 \times 10^2 = 10^6$ (d) 83 × 85 = 8 $7^6 \times 7^{-1}$ (f) $5^4 \times 5^{-1} 5^{-1}$ (g) $9^6 \times 9^{-1} 9^{-1}$ (h) = 613 (e) $6^8 \times 6^5$ $a^{2} \times a^{12}$ (1) $x^3 \times x^5 = x^8$ (j) (i) $c^2 \times c^9$ $y^5 \times y^5$ <u>-y</u> $q^{11} \times q^9$ (n) $p \times p^9$ (0) (m) **(p)** = P^{ro} q $x^7 \times x^{-2}$ (a) $m^3 \times m^{-5}$ (b) (c) $p^{-8} \times p^5$ (d) $a^{-3} \times a^{-5}$ $P^{-3} = P^{-3}$ = 1/m2 m a (c) $5m^{-3} \times 2m^5$ (d) $7y^{10} \times 4y^2 \times 5y^{-3}$ 3. (a) $3a^2 \times a^3$ (b) $4m^3 \times 2m^5$ 140y 30 (f) $10k^2m^3 \times 6k^{-3}m^6$ (g) $2m^3 \times 7m^{-3} \times 4m^6 \times -5$ **60k** m² = **280m** (e) $-2k^2y \times 4y^2$ -8k²y³ (ii) $5a^2 (6a^3 - 2a^{-2})$ (iii) $-4xy(2x^2 - 3x^5y^{-1})$ 4. (i) 3a(2a + 1)(iv) $a^{0.5}(2a^{1.5} - a^{-0.5})$ (v) $5g^{2}h^{2}(4g^{-7} - 2h^{6})$ (vi) $(3^{2} \times 3^{3}) \div (3^{4} \times 3^{-1})$ Qa - a $aog^{-s}h^2 - 10g^2h^8$ 3 ÷ 3 log²h⁸ = 32

Daily Practice	2.11.2015
Q1. Find the value of a house that we	is worth $\pounds 48~000$ and appreciated by
4.5% per annum for 22 years. 00% + 4.5% = 104.5%	48000 ×1.0452-£126 415 30
Q2. Multiply out and simplify $2(x - 3)$	+4(x+1) b+4x+4 = bx-2
Q3. Solve $\frac{x+5}{3} - \frac{4+2x}{4} = -1$	4(x+5)-3(4+2x)=-12 4x+20-10-6x=-12
Q4. $2\frac{1}{5} \div \frac{3}{4} = \frac{1}{5} \div \frac{3}{4} = \frac{1}{5} \times \frac{4}{3}$	$=\frac{44}{15}=2\frac{14}{15}=-2\times +8=-1\times$
Q5. Write 0.0000182 in scientific no	tation = 1.82×10^{5}

Today we will be learning how to divide indices.

2. Dividing Numbers with powers

What would you get if you divided x^3 by x^2 ?

(vi)
$$(3^2 \times 3^3) \div (3^4 \times 3^{-1})$$

 $3^5 \div 3^3 = 9$
 $3^5 \div 3^3 = 3^2$
 $7^6 \div 7^6 = 49 = 7^2$
 $2^5 \div 2^2 = 8 = 2^3$
 $0^5 \div 0^2 = 5^3$

 $km^a \div ym^b = (k \div y)m^{a-b}$ where k and y are constants

$$\frac{M^2}{M^2} = M^\circ \text{ or } I$$

3.11.15

Think about what happens when you write $(2^3)^2$

$$(a^k)^b = a^{kb}$$

Examples:

(i)
$$(3^{2})^{5} = 3^{10}$$
 (ii) $(p^{4})^{8} = p^{32}$ (iii) $(4p^{2})^{3} = 64p^{6}$
(iv) $\frac{(p^{2} \times 2p \times p^{3})^{5}}{p^{7}} = \frac{(2p^{6})^{5}}{p^{7}} = \frac{32p^{30}}{p^{7}} = 32p^{23}$

Today we will be learning how to put a power to a power.

Daily Practice 4.11.2015 Q1. Round 41226 to 3 significant figures → 41.200
Q2. Multiply out and simplify 2f - 3(f - 4) 2f - 3f + 12 - <u>f + 12</u>
Q3. 45.5 × 500 X 50 22 80 × 100 = 22800
Q4. Write 6 000 000 in scientific notation
Q5. Solve $\frac{x-3}{2} + \frac{4x}{3} = 15$ Lette 6
3×-9+8×=90 x=99 ×=9

100 % - 2.4% = 97.6% O.976³ × £15000 = £<u>13945.71</u>

Today we will be working on Problem Solving Skills.

Today we will be continuing to practise

mixed questions on indices and also learn about fractional powers.

November 24, 2015

Q1. Round 17183 to 2 significant figures

Q2. The diagram shows a circle inscribed within a square. Write down an expression for the shaded area

Today we will be learning about fractional indices.

Homework Online due 16.9.15

9 11 15

If a power is a fraction, the denominator is always the root and the numerator is always the power.

(Vii) $8^{-\frac{2}{3}} = \frac{1}{8^{\frac{2}{3}}} = \sqrt[3]{8^{\frac{1}{3}}} = \frac{1}{\sqrt[3]{8^{\frac{1}{3}}}} = \frac{1}{\frac{1}{4}}$

Eractional Indices

Rewrite the following so that they have roots and powers

Eractional Indices	
Rewrite the following so that they	have a fractional index
$\bigcirc \sqrt{x} = \mathbf{x}^{\frac{1}{2}}$	$\textcircled{b} \frac{1}{\sqrt{x}} = \frac{1}{x^{\frac{1}{2}}} = x^{\frac{1}{2}}$
$\textcircled{2} \sqrt[3]{y} = y^{\frac{1}{3}}$	(∛y) ⁷ ₌ y =
(3) ∜z = ≥ [‡]	
$(\bigcup_{x} (\sqrt{x})^{3} \sim x^{\frac{3}{2}} $	(∜z) [°] = 2 [°]
$(5)(\sqrt{x})^4 = \mathbf{x}^4 = \mathbf{x}^2$	$\left(\sqrt[5]{w} \right)^3 = \sqrt[3]{\frac{3}{5}}$