Daily Practice
26.10 .15

Q1. Solve the equation $8 x+7=x-35=-35$

$\frac{4}{3} \times \frac{2}{5}=\frac{8}{15}$
Q3. Factorise $4 x-16 y$
$4 x-16 y$
$4(x-4 y)$
Q4. Find 17% of 200
10% of $200=200 \div 10=20 \quad 5 \% \Rightarrow 20 \div 2=10$ $1 \% \Rightarrow 10 \div 5=2$
$17 \% \Rightarrow 34$
Q5. Calculate the speed Mandy is driving at if she travels 120 miles in 2 and a half hours

$$
S=\frac{D}{T}=
$$

$\frac{120}{2.5}$ $=48 \mathrm{mph}$

$x=-6$

)

Today we are going to learn about scientific notation.
 Homework Due!

When writing numbers in scientific notation, we are writing them so that there is a single non - zero digit in front of the decimal point.

For numbers greater than $1, b>0$. For numbers less than $1, b<0$.

Scientific Notation
Examples: Write the following in scientific notation

Write the following numbers in normal form (in full)
(e) 5.1×10^{3}
(f) 2.83×10^{-7}
(g) 1.093×10^{8}
$5.1 \times 10 \times 10 \times 10$
$2.83 \div 10 \div 10 \div 10 \div 10$ $\div 10 \div 10 \div 10$

109300000

Daily Practice $\quad 27.10 .15$
Q1. Multiply out and simplify $7 k+4(3 k-4)+2(2 k+2)$
$7 k+4(3 k-4)+2(2 k+$
$7 k+12 k-16+4 k+4$
$23 k-16+4$
$23 k-12$
Q2. Josh puts $£ 500$ in the bank at the beginning of the year. He receives his money at the end of the year with 5% simple interest added, how much interest does he receive? 5% of 500_{25} f2S
Q3. Share $\frac{£ 500 \text { in the ratio } 2: 3 \frac{2}{5} \Rightarrow \frac{5(00}{5+3=5} 5 \frac{5}{500}}{\frac{2}{5}}$
Q4. Write 40% as a fraction in its simplest form
$\frac{40}{100}=\frac{4}{10}=\frac{2}{5}$
Q5. Calculate the length of GH

$$
\begin{aligned}
& x^{2}=24^{2}-18^{2} \\
& x^{2}=576-324 \\
& x^{2}=252 \\
& x=\sqrt{252}=15.87 \mathrm{~cm}(2 d p)
\end{aligned}
$$

Today we will be continuing to practise questions on scientific notation.

Scientific Notation questic
Examples:
Ex. 5B Q5
Ex. 5D Q4, 5
Ex. 5E Q1 a, d

1. The area of the surface of the Earth is about $5.095 \times 10^{\text {Q2 }}$ square miles. Approximately 29.2% of this is land. How much of the surface area is land?

$$
\begin{aligned}
0.292 \times 5.095 \times 10^{9} & =1487740000 \text { sq. } \\
& =1.48774 \times 10^{9} \quad \text { miles }
\end{aligned}
$$

2. The mass of an oxygen atom is $2.7 \times 10^{-23} \mathrm{grams}$. The mass of an electron at rest is approx. 30000 times smaller than this. Calculate the mass of an electron at rest

$$
\begin{aligned}
& 2.7 \times 10^{-23} \div 30000 \\
& =9 \times 10^{-28}
\end{aligned}
$$

Paily Practice

28.10 .15

Q1. Round 26.28 to the nearest unit $\longrightarrow 26$
Q2. There are 3.06×10^{21} atoms in one gram of gold, how many atoms are in 500 g of gold? $3.06 \times 10^{21} \times 500=1.53 \times 10^{24}$
Q3. What is 64.5% written as a decimal? $=0.645$
Q4. Write 30 out of 70 as a percentage $30 \div 70 \times 100=42.8 \%$
Q5. Multiply out and simplify $5(2 x-1)-1(x-3)$
Q6. What is the valueof V if $V=p^{2}-3 p$ when $p=-5$?
$V=(-s)^{2}-3(-5)$
$V=25+15$
$V=40$

Laws of Indices

There are various rules that help you work out problems with indices in them.

1. Multiplying terms with powers

minute for 3 minutes. How many ghosts vere there after 3 mins?
$100 \%-30 \%=70 \%$
$12000 \times 0.7^{3}=4116$ ghosts

Indices
A number with a negative power is the same as 1 over the number with a positive power.

$$
\begin{aligned}
& 2 \times 10^{2}=2 \times 10 \times 10 \\
& 2 \times 10^{-2}=2 \div 10 \div 10=2 \\
& \hat{X}=2 \div 10^{2}=\frac{2}{10^{2}} \\
&=2 \times \frac{1}{10^{2}} \\
&=2 \times 10^{2}
\end{aligned}
$$

$a^{-b}=\frac{1}{a} b$
Examples:
(a) $3^{-2}=\frac{1}{3^{2}}$
(b) $4^{-3}=\frac{1}{4^{3}}$
(c) 電 $^{-4}=\frac{1}{a^{4}}$
(d) $3 a^{-5}=3 \times a^{\frac{1}{5}}$
$=\frac{1}{9}$
$=\frac{1}{64}$
$=\frac{3}{a^{5}}$
(e) $\frac{1}{3} a^{-4}=\frac{1}{3 a^{4}}$ $\frac{1}{3} \times \frac{1}{a^{4}}$

Multiplying terms with powers
Examples: Multiply the following
i) $b^{2} \times b^{3}=\underline{b}^{5}$
ii) $\begin{aligned} & 5 a^{6} \times 3 a^{-5} \times 4 a^{2} \\ & =60 a^{-2}\end{aligned}$
iii) $3 a c^{2} \times 2 a^{3}$ $=6 a^{4} c^{2}$
iv) $3 b^{2}\left(2 b^{5}+5\right)$
$6 b^{7}+15 b^{2}$
$3 \times 10^{-1}=0.3$
$3 \times \frac{1}{10}$
$\begin{array}{ll}3 \times 10^{-2} & 4 \times 2^{-1} \\ 3 \times \frac{1}{100}=\frac{3}{100} & 4 \times \frac{1}{2}\end{array}$

Today we will be continuing to learn how to multiply indices.

1. Write each of the following in its simplest index form.
(a) $\quad 3^{4} \times 3^{2}=3^{6}{ }^{6}$ (b) $\quad 2 \times 2^{3}=2^{4}$ (c) $\quad 10^{5} \times 10^{2} 7$ (d) $\quad 8^{3} \times 8^{5}=8^{8}$
(e) $7^{6} \times 7^{=}=7^{\top}$ (f) $\quad 5^{4} \times 5^{4}=5^{8}$ (g) $\quad 9^{6} \times 9^{2}=9^{8 \text { (l) }} \quad 6^{8} \times 6^{5}=6^{13}$
(i) $x^{3} \times x^{5}=x^{8} \quad$ (j) $\quad c^{2} \times c^{9}=C^{11}$ (k) $\quad a^{2} \times a^{12} a^{14}$
(I) $y^{5} \times y^{5} \equiv y^{10}$
(m) $\begin{gathered}b^{10} \times b^{30} \\ =b^{40}\end{gathered}$
((1) $\begin{aligned} \quad p & \times p^{9} \\ & =p^{10}\end{aligned}$
(o) $\begin{array}{lll}d^{2} \times d^{4} & \text { (p) } & q^{11} \times q^{9} \\ & =d^{6} & \\ q^{20}\end{array}$
(a) $m^{3} \times m^{-5}$
(b) $\begin{aligned} & x^{7} \times x \\ & x^{5}\end{aligned}$
(c) $\begin{aligned} & p^{-8} \times p^{5} \\ & p^{-3}=\frac{1}{p^{3}}\end{aligned}$
(d) $\begin{aligned} & a^{-3} \times a^{-5} 1 \\ & a^{-8}=\frac{1}{a^{8}}\end{aligned}$
2. (a) $\begin{aligned} & 3 a^{2} \times a^{3} \\ & 3 a^{5}\end{aligned}$
(e) $\begin{aligned} & -2 k^{2} y \times 4 y^{2} \\ & -8 k^{2} y^{3}\end{aligned}$
$\begin{array}{lll}\text { (b) } 4 m^{3} \times 2 m^{5} & \text { (c) } 5 m^{-3} \times 2 m^{5} & \text { (d) } 7 y^{10} \times 4 y^{2} \times 5 y^{-3} \\ 8 \mathrm{~m}^{8} & 10 \mathrm{~m}^{2} & 140 y^{9}\end{array}$
(f) $10 k^{2} m^{3} \times 6 k^{-3} m^{6}$ (g) $2 m^{3} \times 7 m^{-3} \times 4 m^{6} \times-5$
3. (i) $\begin{gathered}3 a(2 a+1) \\ a^{2}+3 a\end{gathered}$
(ii) $5 a^{2}\left(6 a^{3}-2 a^{-2}\right)$ 。
(iii) $\begin{array}{r}-4 x y\left(2 x^{2}-3 x^{5} y^{-1}\right) \\ -8 x^{3} y+12 x^{6} y^{0}\end{array}$
(iv) $a^{0.5}\left(2 a^{1.5}-a^{-0.5}\right)$ (v) $5 g^{2} h^{2}\left(4 g^{-7}-2 h^{6}\right) \quad$ (vi) $\left(3^{2} \times 3^{3}\right) \div\left(3^{4} \times 3^{-1}\right)$
$2 a^{2}-a^{\circ}$
$\begin{aligned} 20 g^{-5} h^{2}-10 g^{2} h^{8} & 3^{5} \div 3^{3} \\ \frac{20 h^{2}}{g^{5}}-\log ^{2} h^{8} & =3^{2}\end{aligned}$

Daily Practice

Q1. Find the value of a house that was worth $£ 48000$ and appreciated by 4.5% per annum for 22 years.
$100 \%+4.5 \%=104.5 \% \quad 48000 \times 1.045^{22}=f 126415.30$
Q2. Multiply out and simplify $2(x-3)+4(x+1)$
$2 x-6+4 x+4=6 x-2$
Today we will be learning how to divide indices.
Q3. Solve $\frac{x+5}{3}-\frac{4+2 x}{4}=-1 \quad \begin{array}{rr}-12 & 4(x+5)-3(4+2 x)=-12 \\ \times 12\end{array}$
Q4. $2 \frac{1}{5} \div \frac{3}{4}=\frac{11}{5} \div \frac{3}{4}=\frac{11}{5} \times \frac{4}{3}=\frac{44}{15}=2 \frac{14}{15} \begin{array}{r}-2 x+8=-12 \\ -2 x=-20 \\ x=10\end{array}$
Q5. Write 0.0000182 in scientific notation $=1.82 \times 10^{-5}$

What would you get if you divided x^{3} by x^{2} ?
(vi) $\left(3^{2} \times 3^{3}\right) \div\left(3^{4} \times 3^{-1}\right)$

$$
3^{5} \div 3^{3}=9
$$

$$
3^{5} \div 3^{3}=3^{2}
$$

$$
7^{8} \div 7^{6}=49=7^{2}
$$

$$
2^{5} \div 2^{2}=8=2^{3}
$$

$$
a^{5} \div a^{2}=a^{3}
$$

$$
50 a^{5} \div 10 a^{2}=5 a^{3}
$$

Dividing Numbers with powers

Examples: Simplify the following

1. $7^{5} \div 7^{3}=7^{2}$
$2.6 m^{7} \div 24 m$
$=\frac{m^{6}}{4}$ or $\frac{1}{4} m^{6}$
$3.4 m^{8} \div 2 m^{2}$
$=2 m^{6}$

The power of zero

Any number to the power of zero is one.

$$
a^{0}=1
$$

$$
\text { For example: } \quad 5 a^{\circ}=5(1)=\underline{\underline{3}}
$$

4. $\frac{a^{7}}{a^{3}}=\underline{a}^{4} \quad$ 5. $\frac{12 h^{2}}{2 h^{-5}}=6 h^{7}$
5. Write each of the following in its simplest index form.
(a) $2^{8} \div 2^{3}=2^{5}$ (b) $5^{4} \div 5^{2}=5^{2}$ (c) $12^{9} \div 12^{6} 12^{3}$ (d)
(e) $20^{5} \div 2020^{4}$ (f) $\quad 8^{8} \div 8^{4}=8^{4}$ (g) $\quad 3^{18} \div 3^{3}=3^{15}$ (h)
(i) $x^{7} \div x^{2}=x^{5}$ (j) $\quad a^{9} \div a^{5}=a^{4}$ (k) $y^{20} \div y^{10} y^{10}$ (l) $b^{4} \div b^{1}=b^{3}$
(m) $p^{12} \div p^{11} p^{1} \quad$ (n) $c^{7} \div c^{7} \operatorname{lorc}^{\text {(0) }} \quad q^{8} \div q^{2} \equiv q^{6}$ (p) $\quad d^{4} \div d \equiv d^{3}$
(q) $\frac{x^{9}}{x^{3}}=x^{6} \quad$ (r) $\quad \frac{a^{8}}{a^{2}}=a^{6}$ (s) $\frac{m^{14}}{m}=m^{13}$ (t) $\frac{s^{7}}{s^{7}}=s^{\text {o }}$ or 1
(u) $\frac{d^{20}}{d^{12}}=d^{8}$ (v) $\frac{y^{100}}{y^{10}} \approx y^{90}$ (w) $\frac{t^{100}}{t} a t^{99} \quad$ (x) $\quad \frac{w^{10}}{w^{0}}=w^{10}$
6. (a) $\frac{14 x^{7}}{2 x^{-3}}=7 x^{10} \frac{36 x^{15}}{12 x^{5}}=3 x^{10} \frac{6 x^{9}}{8 x^{-3}} \frac{3}{4} x^{(d)} \frac{48 x^{9}}{8 x^{9}}=6 x^{\text {(c) }}$ or 6
(e) $\frac{2 x^{2} \times x^{3} \times 6 x}{4 x}$
(f) $\frac{10 x^{2} \times 2 x^{2}}{10 x^{-4}}$
(g) $\frac{1 x}{10 x^{-4}}$
$=3 x^{5}$
$=2 x^{8}$
$\frac{1}{10} x^{5}$

H Succe
I can multiply numbers with powers

I can divide numbers with powers

3. Putting a power to a power

Think about what happens when you write $\left(2^{3}\right)^{2}$

$$
\left(a^{k}\right)^{b}=a^{k b}
$$

Examples:
(i) $\left(3^{2}\right)^{5}=3^{10}$
(ii) $\left(p^{4}\right)^{8}=p^{32}$
(iii) $\left(4 p^{2}\right)^{3}=64 p^{6}$
(i) $\frac{\left(p^{2} \times 2 p \times p^{3}\right)^{5}}{\cdot p^{7}}=\frac{\left(2 p^{6}\right)^{5}}{p^{7}}$
$=\frac{32 p^{30}}{p^{7}}=32 p^{23}$

Putting a power to a power

Write each of the following in its simplest index form.

From Pegasys booklet

Today we will be working on Problem Solving Skills.

Today we will be continuing to practise
mixed questions on indices and also learn about fractional powers.

Daily Practice
 4.11 .2015

Q1. Round 41226 to 3 significanf figures $\rightarrow 41200$
Q2. Mulitiply ou and simplify $2 f-3(f-4)$

$2 f-3 f+12$

$-f+12$
Q3. 45.6×500
$\frac{x}{2280} \times 100=22800$
Q4. Wrife 6000000 in scienfific notation 6×10^{6}
Q5. Solve $\frac{x-3}{2}+\frac{4 x}{3}=15 \quad$ LCM $=6$

$$
\begin{gathered}
3 x-9+8 x=90 \\
11 x=99 \\
x=9
\end{gathered}
$$

$\begin{array}{cr}\text { Daily Practice } & 6.11 .15 \\ 0.0001706 \text { in scientific notation } & 1.706 \times 10^{-4}\end{array}$
Q2. Multiply out and simplify $7 y-2(y+1)+3$
$7 y-2 y-2+3$
Q3. Solve the inequation $\times 4 \times \frac{(3 x-1)}{4} \leq 4 \times 4$
$8 x-(3 x-1) \leqslant 16$
Q4. $\begin{aligned} 2 \frac{1}{5} \div \frac{15}{8} & =\frac{11}{5} \div \frac{18}{8} \quad \begin{array}{r}8 x-3 x+1 \\ 5 x+1\end{array} \quad 16 \\ & =\frac{11}{5} \times \frac{8}{15}=\frac{88}{75}=\begin{array}{rl}5 x \\ 55 & 5 \leq 15 \\ x \leq 3\end{array}\end{aligned}$
Q5. Calculate the value of a car that was worth $\overline{£ 15000}$ and depreciated by 2.4% per annum for 3 years

$$
\begin{aligned}
100 \%-2.4 \% & =97.6 \% \\
0.976^{3} \times f(15000 & =f(3945.71
\end{aligned}
$$

Applying the rules of indices to questions From Pegasys booklet Simplify these expressions.

Daily Practice

 9.11 .15Q1. Round 17183 to 2 significant figures
$\rightarrow 17000$
Q2. The diagram shows a circle inscribed within a square. Write down an expression for the shaded area

Q4. Solve $\frac{2 x-1}{3}+\frac{30 x}{10}=18 \times 30$
$10(2 x-1)+3(30 x)=540$ $20 x-10+90 x=540$ $110 x=550$
$x=5$

Eractionallendices $9 \cdot 11 \cdot 15$
If a power is a fraction, the denominator is always the root and the numerator is always the power.

$$
a^{\frac{m}{n}}=\sqrt[n]{a^{m}}
$$

When the root is 2 , this just means square root.

$$
\sqrt[3]{8^{2}} \text { or }(\sqrt[3]{8})^{2}
$$

Examples:
(i) $z^{\frac{2}{3}}=\sqrt[3]{z^{2}}$ or $(\sqrt[3]{z})^{\text {(ii) }} \quad a^{\frac{1}{2}}=\sqrt{a}$ (iii) $a^{\frac{1}{3}} a^{\frac{3}{a}}$ (iv) $\int^{a^{7}}$

$$
\begin{aligned}
\text { (v) } \begin{aligned}
8^{\frac{3}{2}} & =\sqrt{81^{3}} & & \text { (vi) } b^{-1 / 2}=\frac{1}{b^{\frac{1}{2}}}=\frac{1}{\sqrt{6}}=\sqrt[7]{a^{5}} \\
& =729 & & =\frac{1}{8^{\frac{3}{8}}}=\frac{1}{4}
\end{aligned}
\end{aligned}
$$

Today we will be learning about fractional indices.

Homework Online due 16.9.15

Rewrite the following so that they have a fractional index
(1) $\sqrt{x}=x^{\frac{1}{2}}$
(6) $\frac{1}{\sqrt{x}}=\frac{1}{x^{\frac{1}{2}}}=x^{-\frac{1}{2}}$
(2) $\sqrt[3]{y}=y^{\frac{1}{3}}$
(3) $\sqrt[4]{z}=z^{\frac{1}{4}}$
(77) $(\sqrt[3]{y})^{7}=y^{\frac{7}{3}}$
(4) $(\sqrt{x})^{3}=x^{\frac{3}{2}}$
(8) $(\sqrt[4]{z})^{3}=z^{\frac{3}{4}}$
(5) $(\sqrt{x})^{4}=x^{\frac{4}{2}}=x^{2}$
(a) $(\sqrt[5]{w})^{3}=w^{\frac{3}{3}}$

