$$
\begin{aligned}
& \text { Starter } \\
& \text { Gaussian elimination to show that the set of equations } x-y+z=1 \\
& \text { Obtain the solution when } a=3 \text {. } 1 \text { mark } \\
& r_{2}-r_{1}\left(\begin{array}{ccc|c}
1 & -1 & 1 & 1 \\
1 & 1 & 2 & 0 \\
2 & -1 & a & 2
\end{array}\right) \longrightarrow r_{2}, r_{1}\left(\begin{array}{ccc|c}
1 & -1 & 1 & 1 \\
0 & 2 & 1 & -1 \\
2 & -1 & a & 2
\end{array}\right) \\
& \left.\xrightarrow[r_{3}-\frac{1}{2} r_{2}]{\longrightarrow} \left\lvert\, \begin{array}{ccc|c}
1 & -1 & 1 & 1 \\
0 & 2 & 1 & -1 \\
0 & 1 & a-2 & 0
\end{array}\right.\right) \longrightarrow\left(\begin{array}{ccc|c}
1 & -1 & 1 & 1 \\
0 & 2 & 1 & -1 \\
0 & 0 & a-2-1 & \frac{1}{2}
\end{array}\right) \\
& \begin{array}{lll}
\left(a-2-\frac{1}{2}\right) z=\frac{1}{2} & 2 y+z=-1 & x-\left(\frac{-a+2}{2-5}\right)+\frac{1}{2 a-s}=1
\end{array} \\
& \begin{array}{cc}
\left(a-\frac{s}{4}\right) z=\frac{1}{2} & 2 y+\frac{0.5}{a-2.5}=-1 \\
z=\frac{0.5}{a-2.5} & y=\frac{-a+2}{2 c-5}
\end{array} \\
& \Rightarrow \text { There is a unique solution when } a \neq 2.5 \\
& \text { If } a=2.5 \text {, a solution docon't exist becave youconot } \div 0 \\
& \text { If } a=3 \Rightarrow x=\frac{-1}{1}=-1, \quad y=-1 \quad z=1
\end{aligned}
$$

## Sequences

$$
n \text { denotes the position of each term. }
$$

For example:

$$
\begin{aligned}
& \frac{1}{n} \text { denotes the sequence } 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \ldots \\
& 2 n+1 \text { denotes the sequence } 3,5,7,9,11 \ldots
\end{aligned}
$$

If we have a formula for the general or $n$th term, it is possible to find any specific term in the sequence.

Sequences
A sequence is an ordered list of terms. Each number in the sequence is known as a term or element.

The $n$th term or general term is denoted by $u_{n}$.
A finite squence is one that has a last term.
An infinite squence is one which continues indefinitely. E.g. natural numbers listed in order or prime numbers listed in order.

## Sequences

Examples:

1. Given $u_{n}=\frac{2 n}{n+1}$, find the first 4 terms of the sequence

$$
\begin{aligned}
& \begin{array}{l}
u_{1}=\frac{2(1)}{1+1}=\frac{1}{=} \quad u_{2}=\frac{2(2)}{2+1}=\frac{4}{3} \quad u_{3}=\frac{2(3)}{3+1}=\frac{6}{4}=\underline{\frac{3}{2}} \\
u_{4}=\frac{2(4)}{4+1}=\underline{\underline{\frac{8}{5}}}
\end{array} \\
& \text { 2. Find the 4th term of the recurrence relation } \\
& u_{n+1}=0.5 u_{n}+3 \quad \text { where } u_{1}=2 \\
& u_{2}=0.5(2)+3=4 \quad 0.5(5)+3=5.5 \\
& u_{3}=0.5(4)+3=\underline{=}
\end{aligned}
$$

Arithmetic Sequences
If the values of the terms of an Arithmetic Sequence are plotted on a graph against the term position, the relationship can be seen as a linear one.


Arithmetic Sequences
Examples:

1. Find the 25 th term of the arithmetic sequence $2,6,10,14 \ldots$
$u_{n}=a+(n-1) d$
$u_{n}=2+(n-1) 4$
$u_{25}=2+(25-1) 4=98$
$u_{1} u_{3} u_{3}$
2. For the sequence $8,12,16,20 \ldots$
(a) Find the nth term rule

$$
\begin{aligned}
& u_{n}=a+(n-1) d \\
& u_{n}=8+(n-1) 4
\end{aligned}
$$

$$
\begin{array}{ll}
=8+(n-1) \\
u_{n}=8+4 n-4
\end{array} \quad u_{n}=4 m+4
$$

(b) The 100th term

$$
U_{100}=4(100)+4=404
$$

## Starter

In the arithmetic sequence beginning $2,8,14,20 \ldots$ which term is the first term to exceed 100?

$$
\begin{aligned}
& U_{n}= 9+(n-1) d \\
&=2+6(n-1) \\
&=6 n-4 \\
& 100=6 n-4 \\
& 104=6 n \\
& n=17.3 \\
& n=18 \\
& U_{18}=2+6(18-1) \\
&=2+6(17)=104
\end{aligned}
$$

1

Finding the sum of an Arithmetic Sequence
We can use a similar method to find the sum of an arithmetic sequence.

Let $S_{n}=$ the sum of the first $n$ terms

$$
\Rightarrow S_{n}=u_{1}+u_{2}+u_{3}+\ldots+u_{n}
$$

For the arithmetic sequence $u_{1}=a, u_{2}=a+d, u_{3}=a+2 d \ldots$
$\Rightarrow S_{n}=a+a+d+a+2 d+\ldots .+a+(n-1) d$
$S_{n}=a+(n-1) d+a+(n-2) d+a+(n-3) d+\ldots \ldots+a$
$2 S_{n}=2 a+(n-1) d+2 a+d+(n-2) d+2 a+2 d+(n-3) d+\ldots+2 a+(n-1) d$

$$
\begin{gathered}
2 a+d+n d-2 d \\
2 a+n d-d
\end{gathered}
$$

$$
\text { 1 } \quad 2 a+(n-1) d+\quad \begin{array}{r}
2 a+n d-d \\
2 a+d(n-1)
\end{array}+\ldots+2 a+(n-1) d
$$

$2 S_{n}=n(2 a+(n-1) d) \quad$ Sum of the first $n$
$1 \quad S_{n=\frac{n}{2}(2 a+(n-1) d)} \quad \begin{aligned} & \text { Sum of the first } n \\ & \text { terms of an arithmetic } \\ & \text { sequence. }\end{aligned}$ sequence.
(On formulae Sheet)

Arithmetic Sequences
3. Find a formula for the $n$th term $u_{n}$ of the sequence $1,4,7,10 \ldots$

$$
\begin{aligned}
& u_{n}=a+(n-1) d \\
& u_{n}=1+(n-1) 3 \\
& u_{n}=3 n-2
\end{aligned}
$$

4. The 3 rd term of an arithmetic sequence is 40 and the 5 th term is 30.
(a) Find the first term and the common difference.


## Finding the sum of an Arithmetic Sequence

Consider the series $1,2,3,4, \ldots 100$ where $S$ is the sum of the series.
If we also look at the reverse of the series 100, 99, 98, ... 1 it will have the same sum.
Therefore if we add the series together, we get

$$
S+S=2 S=101+101+101+\ldots+101
$$

This means that $2 S=100 \times 101$, so what is the value of $S$ ?
$S=5050$

## Finding the sum of an Arithmetic Sequence

Examples:

1. Find the sum of the first 15 terms of the arithmetic sequence

$$
\begin{aligned}
3,8,13,18 \ldots & \\
S_{n} & =\frac{n}{2}(2 a+(n-1) d) \\
S_{15} & =\frac{15}{2}(2(3)+(15-1) 5) \\
& a=3 \quad n=15
\end{aligned}
$$

2. Find the sum of the arithmetic series $12,19,26,33, \ldots 285$

| last <br> term <br> Find <br> position | $a+(n-1) d$  <br> 285 $=12+(n-1)(7)$ <br> 285 $=12+7 n-7$ <br> 280 $=7 n$ | $S_{n}=$ | $\frac{n}{2}(2 a+(n-1) d)$ |
| ---: | :--- | ---: | :--- |
| $n$ | $=40$ | $S_{40}$ | $=\frac{40}{2}(2(12)+(40-1) 7)$ |
|  |  | $S_{40}$ | $=5940$ |

Finding the sum of an Arithmetic Sequence
Examples:
3. Let $u_{n}$ denote the $n$th term of the arithmetic sequence $2,10,18$,

26 ...
Let $S_{n}=\sum_{k=1}^{n} w_{k}$
(a) Find a formula for $S_{n}$ in terms of $n$.
(b) Find the least value of $n$ for which $S_{n}>1000$.
(c) Evaluate $\sum_{i=1}^{m} u_{i n}$
(a) $S_{n}=\frac{n}{2}(2 a+(n-1) d)$
(b) $4 n^{2}-2 n>1000$
$\quad-2 \quad \alpha=8$
$4 n^{2}-2 n-1000>0$
$2 n^{2}-n-500>0$
$a=2 \quad \alpha=8$
$S_{n}=\frac{n}{2}(2(2)+(n-1) 8)$
$n=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(2)-504}}{2(2)}$
$\begin{aligned}= & 2 n+4 n(n-1) \\ = & 2 n+4 n^{2}-4 n\end{aligned}$
$n=-18.6$ and 16.1
If would be the $17^{\text {th }}$ lerm
$\left\{\begin{aligned} C \text { heck } S_{16} & =4(16)^{2}-2(16)=992<1000 \\ S_{17} & =4(17)^{2}-2(17)=1122>1000\end{aligned}\right.$
(c) $\sum_{k=0}^{40}$

$$
\begin{array}{r}
\sum_{20}^{10} U_{k} \quad \begin{array}{r}
\text { Sum of the terms from } 20 \text { to } 40 \\
S_{40}
\end{array}=4(40)^{2}-2(40)=6320 \\
S_{19}=4(19)^{2}-2(19)=1406
\end{array}
$$

$S_{40}-S_{19}=6320-1406=\underline{4914}$

Finding the sum of an Arithmetic Sequence $\qquad$
The terms of a sequence are given by $U_{k}=11-2 k, k \geq 1$

$$
\begin{aligned}
& \text { (a) Obtain a formula for } S_{n} \text { where } S_{n}=\sum_{k=1}^{n} u_{k} \\
& \begin{array}{lll}
S_{n}=\frac{n}{2}(2 a+(n-1) d) & S_{n} & =\frac{n}{2}(2(9)+(n-1)(-2)) \\
u_{1}=11-2(1)=9 & a_{n}=9 & \\
=\frac{n}{2}(18-2 n+2) \\
u_{2}=11-2(2)=7 & d=-2 &
\end{array} \\
& =10 n-n^{2} \\
& 21=10 n-n^{2} \\
& n^{2}-|0 n+2|=0 \\
& (n-7)(n-3)=0 \\
& n=7 \text { or } n=3
\end{aligned}
$$

## Geometric Sequences

Consider the sequence $1,2,4,8,16, \ldots$
The first term is 1 and the terms are multiplied by 2 each time. This is a geometric sequence with the first term $a=1$ and common ratio $r=$ 2.

## The general geometric sequence

The nth term is denoted by $u_{n}$
$u_{1}=a \quad u_{2}=a \times r \quad u_{3}=a \times r^{2} \quad u_{4}=a \times r^{3} \quad$ and so on

In general $u_{n}=a^{n-1}$. We can find particular terms with this formula.
Note: The general sequence is also defined by the recurrence relation $u_{n+1}=r u_{n}$ with the first term $u_{1}=a$

Starter

The sum of the first twenty terms of an arithmetic sequence is 320 .


Finding the sum of an Arithmetic Sequence
5. The sum $S_{n}$ of the first $n$ terms of a sequence $u_{1}, u_{2}, u_{3}, \ldots$ is given by $S_{n}=8 n-n^{2}, n \geq 1$.
(a) Calculate the values of $u_{1}, u_{2}, u_{3}$ and state what type of sequence it is.
(b) Obtain a simplified formula for $u_{n}$ in terms of $n$.
(a) $S_{1}=8(1)-1^{2}=7$
$u_{1}=s_{1}=7$
$a=7$
$S_{2}=8(2)-2^{2}=12$
$S_{3}=8(3)-3^{2}=15$
$u_{2}=12-7=5$
$S_{3}=8(3)-3^{2}=15$
$u_{3}=15-12=3$
It is a dearesixing arithmetic sequence.
(b) $U_{n}=a+(n-1) d$
$=7+(n-1)-2$
$=7-2 n+2$
$=9-2 n$

Geometric Sequences
Examples:

1. Find the 10th term of the sequence $3,12,48,192, \ldots$
$u_{n}=a r^{n-1}$
$u_{10}=3(4)^{10-1}=3\left(4^{9}\right)=786432$
2. Find the 5 th term of the sequence which is of positive terms with 3rd term 18 and 7 th term 1458

| $u_{3}=18$ | $u_{7}=1458$ |
| :--- | :--- |
| $18=a r^{2}$ | $1458=a r^{6}$ |
| $\frac{18}{r^{2}}=a$ | $1458=\left(\frac{18}{r 3}\right) r^{4}$ |

$18 r^{4}=1458$
$r^{4}=81$
$r= \pm \sqrt[4]{81}= \pm 3$
$r=3$
$u_{5}=a r^{4}$
$=2\left(3^{4}\right)=162$

## Starter

Matrices $A$ and $B$ are defined by $A=\left(\begin{array}{cc}4 & p \\ -2 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}x & -6 \\ 1 & 3\end{array}\right)$.
(a) Find $A^{2}$.
(b) Find the value of $p$ for which $A^{2}$ is singular.

2
(a) $A^{2}=\left(\begin{array}{cc}4 & p \\ -2 & 1\end{array}\right)\left(\begin{array}{cc}4 & p \\ -2 & 1\end{array}\right)=\left(\begin{array}{cc}16-2 p & 5 p \\ -10 & -2 p+1\end{array}\right)$
(b) Singular $\Rightarrow$ Noinverse $\Rightarrow \operatorname{det} A^{2}=0$

$$
\begin{aligned}
& (16-2 p)(-2 p+1)-(5 p)(-10)=0 \\
& =-32 p+16+4 p^{2}-2 p+50 p=0 \\
& 4 p^{2}+16 p+16=0 \\
& p^{2}+4 p+4=0 \\
& (p+21 p+2)=0
\end{aligned}
$$

## Sum of a Geometric Series

Examples:

1. Find the sum of the first 9 terms of the geometric series $4,8,16$,
$32, \ldots$

$$
\begin{aligned}
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \quad a=4 \quad r=2 \\
& S_{q}=\frac{4\left(1-2^{9}\right)}{1-2}=\frac{4(-511)}{-1}=2044
\end{aligned}
$$

Sum of a Geometric Series

$$
\begin{aligned}
& S_{n}=u_{1}+u_{2}+u_{3}+\ldots+u_{n} \\
& u_{1}=a \quad u_{2}=a r \quad u_{3}=a r^{2} \ldots u_{n}=a r^{n-1} \\
& S_{n}=a+a r+a r^{2}+\ldots+a r^{n-1} \\
& r S_{n}=a r+a r^{2}+a r^{3}+\ldots+a r^{n} \\
& S_{n}-r S_{n}=a-a r^{n} \quad \text { ff } r=1 \\
& S_{n}(1-r)=a\left(1-r^{n}\right) \quad \underline{S_{n}=n a} \\
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \quad r \neq 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sum of a Geometric Series } \\
& \text { Examples: } \\
& \text { 2. Evaluate } \sum_{k=1}^{3 n}(0.9)^{k} \quad \text { and give your answer to } 3 \text { dep. } \\
& u_{1}=0.9^{1}=0.9 \quad u_{2}=0.9^{2}=0.81 \quad u_{3}=0.9^{3}=0.729 \\
& \begin{array}{r}
a=0.9 \quad r=0.9 \quad \frac{0.9\left(1-0.9^{20}\right)}{1-0.9}=7.906 \quad(3 \text { dep. }) .
\end{array} \\
& \text { 3. Evaluate the sum of the geometric series } 4,20,100, \ldots, 62500 \\
& u_{n}=a r^{n-1} \\
& 62500=4\left(5^{n-1}\right) \\
& 15625=5^{n-1} \\
& \log _{e} 15625=\log _{g} 5^{n-1} \\
& \log _{2} 15625=(n-1) \log _{2} 5 \\
& \frac{\log _{2} 15625}{\log _{2} 5}=n-1 \\
& n=\frac{\log _{1} 15625}{\log _{e} 5}+1=7 \\
& S_{7}=\frac{4\left(1-5^{3}\right)}{1-5}=78124
\end{aligned}
$$

## Starter

A line 315 cm in length is divided into 6 parts such that the length of the parts form a geometric sequence.

Given that the length of the longest part is 32 times larger than that of the shortest part, find the length of the shortest part

$$
\begin{array}{ll}
U_{6}=32 U_{1} \quad S_{6}=315 & \\
U_{6}=a r^{5} & 315=\frac{a\left(1-r^{6}\right)}{1-r} \\
U_{6}=32 a & 315-315 r=a-a r^{6} \\
32 \alpha=\alpha r^{5} & 315-315 / 2)=a-64 a \\
r=\sqrt[5]{32}=2 & -315=-63 a \\
\text { Shortest part }=50 \mathrm{am} & \underline{a=5}
\end{array}
$$

## Limits \& Infinite Geometric Series

Consider the sum of the first $n$ terms of the geometric series $1,2,4$,
$8 \ldots a=1$ and $r=2$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{1\left(1-2^{n}\right)}{1-2}$
$s_{5}=31 \quad s_{10}=1023 \quad s_{20}=1048575 \frac{s_{n}}{}=\frac{1-2^{n}}{-1}=2^{n}-1$

The sum of the first $n$ terms increases infinitely without a limit. This is known as a divergent series.

Limits \& Infinite Geometric Series
How do you think you could determine whether a sequence has a limit?

It is the value of the common ratio ' $r$ ' that determines whether or not a geometric series has a sum to infinity

$$
\begin{aligned}
& -1<r<1 \text { means it has a sum to infinity } \\
& \text { Given } S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}, r \neq 1 \quad \text { if }-1<r<1 \text {, then } r^{n} \rightarrow 0 \text { as } n \rightarrow \infty \\
& S_{\infty}=\frac{a(1-0)}{1-r}=\frac{a}{1-r}
\end{aligned}
$$

Limits \& Infinite Geometric Series
Now consider the sequence $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots$
$a=1, r=\frac{1}{2}$

$$
\begin{aligned}
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \Rightarrow \frac{8}{1\left(1-\frac{1}{2} n^{n}\right)} \\
&=\frac{1-\frac{1}{2^{n}}}{\frac{1}{2}} \\
&=2-\frac{2}{2^{n}}=2-2^{1-n} \\
& 2\left(1-\frac{1}{2^{n}}\right)
\end{aligned}
$$

$S_{5}=1.9375 S_{10}=1.998 \ldots S_{20}=1.999 \ldots \ldots$

The sum of the first $n$ terms approaches a limit of 2 as $n$ tends to infinity. This is known as a convergent sequence.
We say that this geometric series has a sum to infinity of 2 and write $S_{\infty}=2$

## Limits \& Infinite Geometric Series

Examples:

1. Explain why the geometric series $27,18,12, \ldots$ has a sum to infinity and find the value of the sum to infinity
$r=\frac{2}{3}$ therefore $-1<\frac{2}{3}<1 \Rightarrow k$ has a sum to infinity.

$$
S_{\infty}=\frac{a}{1-r}=\frac{27}{1-\frac{2}{3}}=\frac{27}{3}=81
$$

2. $u_{1}, u_{2}, u_{3}, \ldots$ is a geometric sequence with $u_{1}=48$ and $\sum_{k=1}^{\infty} u_{k}=64$

Starter

1. Write down and simplify the 16 mins

$$
a r^{2}=3
$$

Find the value of $u_{4}$

$$
a=48
$$

$$
\begin{array}{rlrl}
S_{\infty}=\frac{a}{1-r} & U_{n} & =a r^{n-1} \\
64 & =\frac{48}{1-r} & U_{4} & =48\left(\frac{1}{4}\right)^{4-1} \\
64-64 r & =48 & & =48\left(\frac{1}{64}\right) \\
-64 r & =-16 & & =\frac{48}{64}=\frac{3}{4} \\
r & =\frac{1}{4} & &
\end{array}
$$

$$
r=\frac{-6}{a}
$$

$$
a\left(-\frac{6}{a}\right)^{2}=3
$$

$$
A\left(\frac{36}{a^{21}}\right)=3
$$

$$
\begin{array}{ll}
\frac{36}{a}=3 \\
3 a=36
\end{array} r=\frac{-6}{12}=\frac{-1}{2}
$$

$$
3 a=36
$$

$$
a=12
$$



Two matrices $A$ and $B$ are given as

$$
A=\left(\begin{array}{lll}
3 & 1 & 1 \\
0 & 3 & \alpha \\
1 & 0 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{ccc}
4 & 1 & 2 \\
-1 & 4 & 3 \\
2 & 1 & 0
\end{array}\right) .
$$

Find the value of $\alpha$ for which the matrix $3 A-2 B$ is singular.
(a) Express $z=\frac{4-2 i}{3+i}-(1-2 i)(3+i)$ in the form $x+i y$ where $x$ and $y$ are real numbers. 3
(b) (i) Show that $-2 i$ is a root of the equation $z\left(z^{3}+8 z^{2}+36 z+32\right)+128=0$. $\quad 2$
(ii) Write down a second root of the equation $z\left(z^{3}+8 z^{2}+36 z+32\right)+128=0$. $\mathbf{1}$
(iii) Find the other two roots of the equation $z\left(z^{3}+8 z^{2}+36 z+32\right)+128=0$. 3

Use Gaussian elimination to solve the following system of equations

$$
\begin{aligned}
x+2 y+z & =4 \\
3 x+5 y+6 z & =10 \\
2 x+5 y-z & =10 .
\end{aligned}
$$

Find the solution corresponding to $\mathrm{y}=-1$.
$r_{2}-3 r_{1}\left(\begin{array}{ccc|c}1 & 2 & 1 & 4 \\ 3 & 5 & 6 & 10 \\ 2 & 5 & -1 & 10\end{array}\right) \rightarrow \underset{r_{3}-2 r_{1}}{\rightarrow}\left(\begin{array}{ccc|c}1 & 2 & 1 & 4 \\ 0 & -1 & 3 & 2 \\ 2 & 5 & -1 & 10\end{array}\right)$
$\left\lvert\, r_{3}+r_{2}\left(\begin{array}{ccc|c}1 & 2 & 1 & 4 \\ 0 & -1 & 3 & -2 \\ 0 & 1 & -3 & 2\end{array}\right)=\left(\begin{array}{ccc|c}1 & 2 & 1 & 4 \\ 0 & -1 & 3 & -2 \\ 0 & 0 & 0 & 0\end{array}\right)\right.$

$$
\begin{array}{rc}
-y+3 z=-2 & x+2 y+z=4 \\
1+3 z=-2 & x-2-1=4 \\
3 z=-3 & x=7 \\
y=-1 \quad z=-1 &
\end{array}
$$

Starter
11.1.2017

The first two terms of a series are $1+\sqrt{5}$ and $1+\frac{1}{\sqrt{5}}$
(a) If the series is arithmetic, show that the common difference is $\frac{-4}{\sqrt{5}}$, and that the sum of the first six terms is $6-6 \sqrt{5}$.
(b) If the series is geometric, show that it has a sum to infinity, and that this sum is $\frac{1}{2}(5+3 \sqrt{5})$.
(a) $d=1+\frac{1}{\sqrt{5}}-(1+\sqrt{5})=-\sqrt{5}+\frac{1}{\sqrt{5}}=\frac{1}{\sqrt{5}}-\frac{5}{\sqrt{3}}=\frac{-4}{\sqrt{5}}$
$\begin{aligned} 56=\frac{1}{2}(29+(t-1) d) & =\frac{6}{2}\left(2(1+\sqrt{5})+5\left(-\frac{4}{\sqrt{5}}\right)\right. \\ & =6+6 \sqrt{5}-\frac{60}{\sqrt{5}}=b+6 \sqrt{5}-\frac{60 \sqrt{5}}{5}\end{aligned}$
$=6+6 \sqrt{5}-12 \sqrt{5}=6-6 \sqrt{5}$
(b) $r=\frac{1+\frac{1}{\sqrt{3}}}{1+\sqrt{5}}=\frac{\frac{\sqrt{5}+1}{\sqrt{5}}}{1+\sqrt{5}}=\frac{\sqrt{5}+1}{\sqrt{3}} \times \frac{1}{1+\sqrt{5}}=\frac{\sqrt{5}+1}{\sqrt{5}+5}$

$$
-1<\frac{\sqrt{3}+1}{\sqrt{5}+5}<1
$$

$$
\Rightarrow \text { hos. } \frac{\sqrt{5}+5}{\operatorname{sum}+0^{\circ}}
$$

$S_{\infty}=\frac{a}{1-r}=\frac{1+\sqrt{5}}{1-\left(\frac{13+1}{\sqrt{5}+5}\right)}=\frac{\frac{1+\sqrt{5}}{\sqrt{5}+5 \sqrt{5}-1}}{\sqrt{5}+5}=\frac{1+\sqrt{5}}{1} \times \frac{\sqrt{5}+1}{4}$
$=\frac{\sqrt{5}+5+5+5 \sqrt{5}}{4}=\frac{6 \sqrt{5}+10}{4}=\frac{3 \sqrt{5}+5}{2}$

Starter 16.1.2017

Find the term independent of $u$ in the expansion of $\left(\frac{2}{u^{3}}-3 u\right)^{8}$.

$$
\binom{8}{r}\left(2 u^{-3}\right)^{8-r}(-3 u)^{r}
$$

$$
\left(2 u^{-3}\right)^{8-r}(-3 u)^{r}
$$

$\binom{8}{6}\left(2 u^{-3}\right)^{2}\left(-3 u^{6}\right.$

$$
2^{8-r} u^{-24+3-}\left(-3^{r} u^{\prime}\right)
$$

$(28)\left(4 u^{-6}\right)\left(729 u^{6}\right)$

$$
\begin{aligned}
& u^{-24+3 r} \times u^{r}=u^{\circ} \\
&-24+4 r=0 \\
& 4 r=24 \\
& r=6
\end{aligned}
$$

Recap. on Sigma Notation

$$
\text { Reminder: } \quad \sum_{k=a}^{b} f(k) \quad \begin{array}{ll}
\text { is shorthand for the sum } \\
& f(a)+f(a+1)+f(a+2)+\ldots .+f(b) \\
& \text { where } a, b \in Z \text { and } a \leq b
\end{array}
$$

Evaluate the following:

1. $\sum_{k=1}^{3}(2 k+1)=(2(1)+1)+(2(2)+1)+(2(3)+1)=3+5+7=15=$
2. $\sum_{k=0}^{4}(-2)^{2}=-2^{0}+(-2)+(-2)^{2}+(-2)^{3}+(-2)^{\prime}=1-2+4-8+16=\underline{\underline{I I}}$
3. $\sum_{k=2}^{5}\left(3 k^{2}-7\right)=\left(3(2)^{2}-7\right)+\left(3(3)^{2}-7\right)+\left(3(4)^{2}-7\right)+\left(3(5)^{2}-7\right)$
4. $\sum_{k=1}^{2}(2 k-5)(k-3)=(2(-1)-5)(-1-3)+(2(0)-5)(0-3)+(2(1)-5)(1-3)$ $\begin{aligned}+(2(2)-5)(2-3)= & (-7)(-4)+(-5)(-3)+(-3)(-2) \\ & +(-1)(-1)=28+15+6+1\end{aligned}$
$=\underline{\underline{50}}$

Using partial fractions to find the sum of a series

## Use of Standard Formulae to find the sum of a series

First we will look at some properties of $\sum$

1. $\sum_{k=1}^{n}\{f(k)+g(k)\}=\sum_{k=1}^{n} f(k)+\sum_{k=1}^{n} g(k)$

Proof:

$$
\begin{aligned}
& \text { L.H.S } \\
& \{f(1)+g(1)\}+\{f(2)+g(2)\}+\{f(3)+g(3)\}+\ldots .+\{f(n)+g(n)\}
\end{aligned}
$$

$$
=f(1)+f(2)+f(3)+\ldots+f(n)+g(1)+g(2)+g(3)+\ldots+g(n)
$$

$$
=\sum_{k=1}^{n} f(k)+\sum_{k=1}^{n} g(k)=R \cdot H \cdot S
$$

$$
\begin{aligned}
& \text { (b) Deduce that } \sum_{k=1}^{n} \frac{1}{4 k^{2}-1}=\frac{1}{2}-\frac{1}{2(2 n+1)} \\
& \text { L.H.S } \\
& \sum_{k=1}^{n} \frac{1}{2(2 k-1)}-\frac{1}{2(2 k+1)} \\
& =\frac{1}{2(2(1)-1)}-\frac{1}{2(2(1)+1)}+\frac{1}{2(2(2)-1)}-\frac{1}{k=2}+\frac{1}{2(2(2)+1)-1)}-\frac{1}{2(2(3)+1)} \\
& +\frac{1}{2(2(4)-1)}-\frac{1}{2(2(4)+1)} \ldots \ldots+\frac{1}{k=4}+\frac{1}{2(2 n-1)}-\frac{1}{k=n} \\
& =\underbrace{\frac{1}{2}-\frac{1}{6}}+\frac{16}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+\underbrace{\frac{1}{4}}-\frac{1}{18} \cdots \cdots \\
& +\underbrace{\frac{1}{2(2 n-1)}-\frac{1}{2(2 n+1)}} \\
& =\frac{1}{2}-\frac{1}{2(2 n+1)}=\text { R.H.S }
\end{aligned}
$$

Starter
$A=\left(\begin{array}{cc}p & 1 \\ -2 & q\end{array}\right), B=\left(\begin{array}{cc}2 & 1 \\ 0 & -1\end{array}\right)$ and $A B=\left(\begin{array}{cc}2 & 0 \\ -4 & 2\end{array}\right)$.
(a) Find the values of $p$ and $q$. 2
(b) Hence find the matrix $B A$. 1
(c) A matrix $C$ is such that $C A B=B A$. Find the matrix $C$.
$\begin{array}{ll}\text { (a) }\left(\begin{array}{cc}p & 1 \\ -2 & q\end{array}\right)\left(\begin{array}{cc}2 & 1 \\ 0 & -1\end{array}\right)=\left(\begin{array}{cc}2 & 0 \\ -4 & 2\end{array}\right) & \text { (b) } B A=\left(\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right)=\left(\begin{array}{cc}0 & -2 \\ -2 & -4\end{array}\right)=\left(\begin{array}{cc}2 \\ 2 & 4\end{array}\right)\end{array}$

$$
\begin{array}{rr}
\left(\begin{array}{cc}
4 & p-1 \\
-4 & -2-q
\end{array}\right)=\left(\begin{array}{cc}
2 & 0 \\
-4 & 2
\end{array}\right) & \text { (c) } \begin{array}{rl}
C A B & =B A \\
\times(A B)^{-1} & \times(A B)^{-1} \\
-2-q: 2 & C=B A \times(A B)^{-1}
\end{array}
\end{array}
$$

$$
\begin{array}{cc}
2 p=2 & -2-q-2 \\
p=1 & -q=4 \\
p=-4
\end{array}
$$

$$
(A B)^{-1}=\frac{1}{4}\left(\begin{array}{ll}
2 & 0 \\
4 & 2
\end{array}\right)
$$

$$
C=\frac{1}{4}\left(\begin{array}{cc}
0 & -2 \\
2 & 4
\end{array}\right)\left(\begin{array}{ll}
2 & 0 \\
4 & 2
\end{array}\right)
$$

$$
C=\left(\begin{array}{cc}
-2 & -1 \\
5 & 2
\end{array}\right)
$$

Use of Standard Formulae to find the sum of a series
If a and $b$ are constants:

$$
\begin{aligned}
& \sum_{k=1}^{n}\{a f(k)+b g(k)\}=\sum_{k=1}^{n} a f(k)+\sum_{k=1}^{n} b g(k) \text { from property } 1 \\
& =a \sum_{k=1}^{n} f(k)+b \sum_{k=1}^{n} g(k) \text { from property } 2 .
\end{aligned}
$$

This extends to more than two functions and holds for integration because integration is the limit of summation.

Use of Standard Formulae to find the sum of a series
2. If $a$ is a constant, then $\sum_{k=1}^{n} a f(k)=a \sum_{k=1}^{n} f(k)$

Proof:
L.H.S

$$
a f(1)+a f(2)+a f(3)+a f(4)+\cdots+a+a f(n)
$$

$$
=a\{f(1)+f(2)+f(3)+\cdots+f(n)\}
$$

$$
=a \sum_{k=1}^{n} f(k)=R \cdot H S
$$

Use of Standard Formulae to find the sum of a series
The following formulae may be used to sum series. These are on your exam papers.

$$
\begin{aligned}
& \text { 1. } \begin{aligned}
\sum_{r=1}^{n} r & =\frac{n(n+1)}{2} \\
\text { Proof: }: & \text { L.H.S } \\
& 1+2+3+\cdots+(n-1)+n \\
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \quad a=1 \quad d=1 \\
& \left.=\frac{n}{2}[2(1)+(n-1))\right] \\
& =\frac{n}{2}[2+n-1]=\frac{n}{2}[n+1]=\frac{n(n+1)}{2}-\text { R.H.S }
\end{aligned}
\end{aligned}
$$

Use of Standard Formulae to find the sum of a series
Examples:

1. Evaluate $\sum_{r-1}^{10} r=\frac{n(n+1)}{2}=10 \frac{(10+1)}{2}=55$
2. Evaluate $\sum_{r=1}^{8} 2 r=2 \sum_{i=1}^{8} r=2\left(\frac{n(n+1)}{2}\right)=2\left(\frac{8(8+1)}{2}\right)=72$

Use of Standard Formulae to find the sum of a series

$$
\begin{aligned}
& \text { Examples: } \begin{aligned}
& \text { 3. Evaluate } \sum_{r=1}^{6}(r+3)=\sum_{r=1}^{6} r+6(3) \\
&=\frac{6(6+1)}{2}+18=21+18=\underline{39} \\
& 1+3+2+3+3+3 \\
&+4+3+\cdots
\end{aligned} \\
& \text { 4. Evaluate } \sum_{r=1}^{5}(2 r-3)
\end{aligned}=2 \sum_{r=1}^{5} r+5(-3) \quad \begin{aligned}
& =2\left[\frac{5(5+1)}{2}\right]-15=15
\end{aligned}
$$

$\sum_{k=1}^{\infty}\left(2 k^{3}-3 k\right)=2 \sum_{k=1}^{10} k^{3}-3 \sum_{k=1}^{10} k$
$=2\left[\frac{n^{2}(n+1)^{2}}{2}\right]-3\left[\frac{n(n+1)}{2}\right]$
$=2\left[\frac{10^{2}(10+1)^{2}}{4}\right]-3\left[\frac{10(10+1)}{2}\right]=6050-165=5885$

Use of Standard Formulae to find the sum of a series

1. Find an expression for $\sum_{k=1}^{n} k(k+1)$, giving your answer in fuilly factorised form. Hence sum the series $(1 \times 2)+(2 \times 3)+(3 \times 4)+(4 \times 5)+\ldots+(28 \times 29)$.
2. Find an expression for $\sum_{k=1}^{n} k(k+3)$, giving your answer in fully factorised form.

Hence sum the series $(1 \times 4)+(2 \times 5)+(3 \times 6)+(4 \times 7)+\ldots+(35 \times 38)$.

