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Starter 512.2016
Use Gaussian elimination to show that the set of equations  x—y+ z=1
2 i sotion s xHy+22=0
iti
as a unique solution when g 2.5. 2x-ytaz=2 5 marks
Explain what happens when a=2.5. 1 mark
Obtain the solution when a=3. 1 mark
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Sequences

n denotes the position of each term.

For example:

B

i | —
din | =

L denotes the sequence 1;
2n + 1 denotes the sequence 3,5,7,9,11...

If we have a formula for the general or nth term, it is possible to find
any specific term in the sequence.

Arithmetic Sequences
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Sequences

An arithmetic sequence is one which increases or decreases by a
constantamount. Eg. 2, 5, 8, 11...

The sequence takes the form a, a +d, a + 2d, a + 34 ... where ‘3’ is the
first term and ‘d” is the common difference (the difference between
any two consecutive terms in the sequence)A e J
ot
’5,7.“,'3----- us - aed

u W b uy unia*(n—\\cl
3,3+d,a+2d,3+3d....a+(n-1Nd

3+(n-NY AN
34 U4 General or nth term of
Un -J an Arithmetic Sequence

A sequence is an ordered list of terms. Each number in the sequence
is known as 3 term or element.

The nth term or general term is denoted by u,,.
A finite squence is one that has a last term.

An infinite squence is one which continues indefinitely. E.g. natural
numbers listed in order or prime numbers listed in order.

Sequences

Examples:

, find the first 4 terms of the sequence

) g e WL S

u'=2l(+l)l=l b a3 a1 42
Uy=19 5
[T

2. Find the 4th term of the recurrence relation

Uy =0.5u,+3  where u, =2

U -0s()+3:-4 U -0:s()+3-55
Uy- OSW+3 = s

Arithmetic Sequences

If the values of the terms of an Arithmetic Sequence are plotted on a
graph aqainst the term position, the relationship can be seen as a linear

one. .
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Arithmetic Sequences

Examples:

1. Find the 25th term of the arithmetic sequence 2, 6, 10, 14...
U“_- Q*‘("_‘\d l-ln—l
Un= 2+ ("")"'
Ws = ot 54 =18
U. '} u
2. For the sequence 8, 12, 16 20...
(3) Find the nth term rule
Un:- o + (0 -d
1 (~-DM
B AT untm
(b) The 100th term
uloo: L|(I00\+ Y- g‘

Starter

In the arithmetic sequence beginning 2, 8, 14, 20 ... which term is the
first term to exceed 100?
Un=arn-Nd
SR AGER

“en—¢4

[0C=én-¢

104 < 6n

N3

S f\i% So ' would be e ‘g‘kk"m

U= 246(12-)
=2+6(17) = lok

Finding the sum of an Arithmetic Sequence

We can use 3 similar method to find the sum of an arithmetic
SequenCC.

Let S, = the sum of the first n terms
= S =Ugt Uyt Uzt ..t U

For the arithmetic sequence u; =3, U, =3 +d, us=a+2d ..
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Arithmetic Sequences

3. Find a formula for the nth term u, of the sequence 1, 4, 7, 10...
UQ - a4 (’\‘Dd
oz VT L'\“’s
Un=3a-1

4. The 3rd term of an arithmetic sequence is 40 and the 5th term is
30.

(a) Find the first term and the common difference.

W-a+ k)d=40 Uzt (S- I)d o ’_L(—j)=qb
Uy = at+ B-Dd= Yo q+‘w °Q_$0
ara-vo « Py =
15
(b) Find the 15th term of the sequence. =3
_ 9
U ~ 50+ (15-)(s) T
_ 50 _}O Stﬁ

:—_10

Finding the sum of an Arithmetic Sequence

Consider the series 1, 2, 3, 4, ... 100 where S is the sum of the series.

If we also look at the reverse of the series 100, 99, 98, ... 1 it will have

the same sum.

Therefore if we add the series together, we get

S+S=25=101+ 101+ 101+ ... + 101

This means that 25 = 100 x 101, so what is the value of 52

R:-505%50

Finding the sum of an Arithmetic Sequence

Examples:

1. Find the sum of the first 15 terms of the arithmetic sequence

3,8,13,18...
Sn: 2(&&4—("‘ \A) o=3 n:lS

Sis = =(20) +(15-D3)
S =70

2 Find the sum of the arithmetic series 12, 19, 26, 33, ... 285
‘O\S)' — o+ (n-0d

Soe 220+ (n-i)ol)

2 (N7
Q@i& 26 a;:?n%) See- 42 (202+ (40- )?)
X S0
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Finding the sum of an Arithmetic Sequence

Examples:

3. Let u, denote the nth term of the arithmetic sequence 2, 10, 18,
26

LetS, = 2
.
(a) Find a formula for S, in terms of n,

(b) Find the least value of n for which S, > 1000,

© Bvaluate 31, (5) Yni-2a7 1000
. 2
| @) s; . i(imn‘m&) u;:{?:_ 10007 ¢
as R
Sn- (e nDE) o~ HET
= Qn+ Unfn-L 2z

S an b 15 o 16
— 1w b tng [F™ lem

Chect S = g 2() - 992

S+ MY 2(7} 1223
@ Z\Bl Sum of fa ferms from 20 4o GO
5% (o 2(10)= 6320
Siq = UK -2(19) = |UOb

St~ S = 63201406 = L3k

Finding the sum of an Arithmetic Sequence

The terms of a sequence are given by U, = 11 - 2k, k1

(a) Obtain a formula for S, where S, =

Sn-_ 1<Qa+(ﬂ 300
11-2(0 = QI? .
b Fmd ’cLe values ofn?or WQFIICI'] S, =21 IO{I f')

&f'—me—/\
~lont21=0

. %(2("0+ (n-)
= L([g-an +’2)

g\ I.‘\]

Geometric Sequences

Consider the sequence 1, 2, 4, 8,16, ...

The first term is 1 and the terms are multiplied by 2 each time. This is
a geometric sequence with the first term a = 1and common ratio r =

2.

The general geometric sequence
The nth term is denoted by u,,

U=a U;=axr uz=axr ug,=axr andsoon

In general u, = ar™'. We can find particular terms with this formula.

Note: The general sequence is also defined by the recurrence relation

Uy = ru, with the first term u; = a

January 25, 2017

Starter

The sum of the first twenty terms of an arithmetic sequence is 320

The twenty-first term is 37. 3’,;—,— ot 200{

What is the sum of the first lu terms?

st eI 0 ariie
S, A(lar(n-d) ~210d= 420
St {o(lm (-] 01“{0;’_33"? g2
320 = 00 + O{ d (l'
Sex 5(%Y+(I0-)2)
= 5(4 +)
=40

=

Finding the sum of an Arithmetic Sequence

5. The sum S, of the first n terms of a sequence u; us, us, ... is given by
S,=8n-n?,nx1

(3) Calculate the values of u; us, us and state what type of sequence it
is.

(b) Obtain a simplified formula for u, in terms of n.

@) S1-80-\"23 W=23 . o=t
Si- plV-T =12 U= , a1
5 L33 = uy s 15-1°

. _ -
s o demety i S

b u“ at LV\J)CJ

() - 34 (a-D2
-3 ¥l
- Q -2n

Geometric Sequence

Examples
1. Find the 10th term of the sequence 3, 12, 48,192, ..
n-l
Un - ar
Uo = 3" = 3(4Y- 736432

==
2. Find the 5th term o(the sequence which is of positive terms with 3rd
term 18 and 7th term 1458

ml

Us-18 Uy <148
18:ar" 1458 - ar®
13 (18 «
e s
[t =148
ig_ =1
3+ -0 s
i RV EYIER
— =3

U= ar

< 26)- 12
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Starter

-6
Matrices 4 and B are defined by ,1:[4 "}md ,q:(* ’],
2 1 13
(a) Find 4%

(b) Find the value of p for which 4 is singular.
6-% sp
q u
=) p= P P)- ( —lo 24l
ﬂ Lt -t | le Z{H.

: p=0
D) Sinqular D Nowvese = ot
(\ .njul *-l>— (5[’)(’@) =0

6=
et orP - rop>°
o+ lbp +1679
I*L{F{-‘l’o o
T( 42)(-5’?‘ :i:_l

Sum of 3 Geometric Series

Examples:
1. Find the sum of the first 9 terms of the geometric series 4, 8, 16,

32, .. R
Sn - a(l“r)
(=T a=4 =3

S3:4(-2") 451)
LT T =20w

Sum of 3 Geometric Series

Examples:
4. Find the least number of terms of the geometric series 4, 12, 36,
108... which must be added to give 3 sum exceeding 1 000 000
a=4% =3
3 "< 109, 09 00t
Se- te_(i%) Comees 937
- - loG. !
‘ NG00 1194

= 4[1_3'1) fajj
= {000 000 n:’&
-20»3"): Jooo 000 Ru= Lf(f"?)“)
5y |-3s 500 000 -3 =382
?;Sm ool & R (-’5\1)
2 i(q:gzmz 0
Su>lon000s

[atermS

January 25, 2017

Sum of 3 Geometric Series

Sp=Urtuptus Lt U,

u; =3 u, = ar Ug=af'2 L. u”=arn~1

S,=a+ar+ark+ .. +ar!

S, =ar+ar> +arf+ .. +arm

5,-15,-0 00" :SI 5
n= N
Si-r) = a(l-r") =
S(\: 0\(‘4"\)
(-r {1

um of a Geometric Series

Examples:

2. Evaluate and give your answer to 3 d.p

U-09-09 {(,-097031 W-09-031
0:09 09 (q(-09)
LS er =700 (344)

T

20

3. Evaluate the sum of the geometric series 4, 20, 100, ..., 62500
lo-ar™”
6250 <4(5)
BE25 = 5™
I 5625 - 1oy 5™

loge 5625 <-lege

I% SR

loggS B
S
T2
Sy - 4(1=5)
TR R
Starter

A line 315cm in length is divided into 6 parts such that the length of the
parts form a geometric sequence.

Given that the length of the longest part is 32 times larger than that of
the shortest part, find the length of the shortest part

(I(é: Sau, S6¢3l5

6
U= ar® 315 "0‘—[—({:; )

U63:3;2& . 3}5/?}/6(‘&-5\(6
ede 315-315[7) ~a- bla

3
r= 3222 Ca15 - f3
Shorkesh park= Son =5
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Limits & Infinite Geometric Series

Consider the sum of the first n terms of the geometric series 1, 2, 4,
8..a=1andr=2 Sn—“( “) 1](1-2"
-7 7\‘2“
- n
Sa s2 Qf\ -

S5 = 31 Si0 = ‘OQS S0 = IO L"'&Sﬁ - T —

The sum of the first n terms increases infinitely without a limit. This is
known as a divergent series.

Limits & Infinite Geometric Series

How do you think you could determine whether a sequence has a limit?

It is the value of the common ratio '+ that determines whether or not a
geometric series has a sum to infinity.

~T<r<1 means it has a sum to infinity

Given S, = a(i-r" et if-T<r<i then# =0 asn—=

[~r = 1-r
or: -6
arz=S
r==b
o(2)-3
3¢
K('Z?):S
36 i‘:i A
Qa =3 2z T
303
a:lil
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Limits & Infinite Geometric Series

11
Now consider the sequence 1+=+—+=+.

Sa- a((r)> _Ll—) (-—éﬂ

I

i e
a=1,r=> 2 -
Z z -~ 2N = a_& "
or i
2(L~?)

- 937550 = 1998 50-1-99% ..

The sum of the first n terms approaches a limit of 2 as n tends to
infinity. This is known as a convergent sequence.

We say that this geometric series has a sum to infinity of 2 and write
Sp=2

Limits & Infinite Geometric Series

Examples:

1. Explain why the geometric series 27, 18, 12, ... has a sum to infinity
and find the value of the sum to infinity )
F2% tuee —ALELDE b ason b infindy.
a 23 ps
Seo~ Tor ® I-% = 3 :&

2.uy, Uy, Us, ..Is 3 Jeometric sequence with u, = 48 and 2 =64

Find the value of u, /}\
048 a Unza" -
SOOI"C;& uq-.us(i') SOO
64 < — .
o -4 ()
6Lf"6"‘f:“(‘ 4‘ '5
-t :-'6 f= =
‘ T L.
=Z

Starter
0 16mins
1- Write down and simplify the general term in the expression (2 +ﬁ) .
X 4x
Hence, or otherwise, obtain the term in I,z 3 5
=lo-r A3
lo) < < I X = -
ool L
r X - NN
* -10-c=13 3

f ( z:) (&MXX.,W) (’21 rx_w) ;_‘ 33/ —

(%)) @) o)
( )&WX w) 240 v

X
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2. Below is a system of equations: Two matrices 4 and B are given as

X+2y+3z=3
1‘3’:‘;",’__ > 30101 4
rraaEs 4=10 3 «| and B=|-1 4
Use Gaussian elimination to find the value of Z which leads to redundancy. 4 10 1 2
2 3] 3
2 - Y 5 Q -Zﬁ I ; ?2. <1 Find the value of ¢ for which the matrix 34 —2B is singular 5
~ — o -
I -3 2A[2 A Ty S
{232
R o fa-f2 | =z s |3
> -5 2 - “> O -5 =2 |~
0 -S ZA-S -1 [o RN Z)\ (
Ve YN
2)-1-0 —
1 O=0 ?cdun
A=
. ‘
4-2i .
5 (@)  Express z= —l —(1-2i)(3+i) in the form x + iy where x and y are real numbers 3
2
Find the term independent of « in the expansion of [— - Su] . 4 3+i
u
(b) (i)  Show that —2i is aroot of the equation 2(23 +82° +362 +32)+128 =0. 2
(ii) ‘Write down a second root of the equation z(z3 +8z% +362 +32)+128 =0. 1
(iii)  Find the other two roots of the equation 2(23 +82° +362 +32) +128 =0. 3
Starter 11.1.2017
Use Gaussian elimination to solve the following system of equations The first two terms of a sies are 1+ v5 and 1 +LF
x+2y+ z= 4
3x+5y+6:=10 (a)  Ifthe series s arithmetic, show that the common difference is ;31 and that
2x+5y- z=10. 5 the sum of the first six terms is 665, 4
Find the solution corresponding to y = -1 1 ® xrmT ;mes); ‘geomeric, show that it has a sum to infinity. and that this sum
is —(54345 5 4
v 2 Lo L5 LY
A V3 = N3+ B2 B H 7
Coz Y 124 mw*ﬁ"‘”}& N
- - 2wV S [—
3l 3 s 6 Jio) o [0 -1 3] 0 fir o) = 2 ( 45— 608
2 5 - s -t e ’ i SR
=Lt
vl . LebEoadE = b8
I+ B IS
[ f (53 3 G4 _J__ L J5a
2 4 ! >y | 4 (L)r: % f oW ¢ X T+E T s
[e] 1" [
~t 3 -2 3 ~2 [l
‘Qw o = (o A 0 A lEs
: S/ =\p 009 5 ety
T s
- +3’ﬁ="1 x+2 +%:Lf a 05 +5 -
1+32 -2 e Se = W T fon R 45.15-) Wy
I o) < Tmw ot 1
N N ¥ 48
J:i 2=l x:1 et ysae 50

P
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Starter 16.1.2017

8
. . . . 2
Find the term independent of « in the expansion of [—3 - 3u] .
u

()@ (3 Iy

() (50 () (?) (39"
&5 - _zlu-:—( 3 u) (2%)(‘-[ u")(?zcl“
u-z(lfsrxu’:ho :8”)“%“0
“44lr =0 T
LAY
r\;&

Using partial fractions to find the sum of 3 series

Partial fractions can be used to find the sum of 3 series.

Example:

!
(a) Express =—

[ in partial fractions

A
(k) t @t

(e (@) | |
A(ak D +B(2kr) SN T wzer)
k- + Bk +B
~A+R=]  2A¥28:0
-A-A=I A+8 -0
A1 R--A |
A3 B:r(-;);;

Using partial fractions to find the sum of 3 series

‘)
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Recap. on Sigma Notation

Reminder: "I;— flk) s shorthand for the sum
f=a fa) +fa+1) +f@+2) +..+f(b)

wherea, b € Zanda<b

Evaluate the following: 515
LS ran - GO+ (uu+|)»@s‘|+|)=3+6 1A=l

(SRR ey ]
2 T e ) Y+ (D 2l =

S - b0 LD s6rd
o120+ 4 +ed =B
4 i(.”!k—*)(k—?) = (0-0-5)C1-3) (o) Xo-9+ K0 SXH)
o 1+ A -9 A0 (D ()Y

T CD) 228415 44l
-%

Using partial fractions to find the sum of 3 series

(b) Deduce that L‘le I,l, !

LHS
R
k=i 2()k+h | (
) R T IT |
G -7 e B N B
= KD 2(20?) + 2 2(7 ) — 201 +1) i
ket | '
f ‘ * - 2nt)
-
+o2Gu-) TAge) 20n )k‘
k=4 o

R A R 2%

[ {
= 27204 -RES

Use of Standard Formulae to find the sum of 3 series

Evaluate =

SRl
) | 1
Q*M Z = 2(an+))
"
as N-300
|
2004) ™ 0

@ [+
Z L
z. =
ol (A

First we will look at some properties of Y
D RTCGIE WICIWIC

Proof:
L.HS

L sg + { p egr2 Jpeaeg@f - [ 4900

= {0+ QR [0 5904 gyr g3 S
0 a
20 + é_j"“):R.H.S
= =|
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Starter 18.1.2017
A= rl ,B= 21 and 4B = 20 I

-2 q 0 -1 -4 2
(a) Find the values of p and ¢. 2
(b) Hence find the matrix BA. 1

(©) A matrix C is such that CAB = B4. Find the matrix C. | 2

A Iy o =2

(0) P (2 ) 2 0 (")Eﬁ.'(b -%—2 -q>;(z qj
2 o -] \"4

(1) () @, 585w’

Rl 2qel L ppx A
Z;iT 54 CCRR T §>
- 7,«1_.5{ !(O -2 [«
- gy uy

“(1)

Use of Standard Formulae to find the sum of 3 series

If 3 and b are constants:

&y from property 1
=ay f{k)+b) &) from property 2.
k=1 k=1

This extends to more than two functions and holds for integration
because integration is the limit of summation.

Use of Standard Formulae to find the sum of 3 series

2. irz _ n(n+l)£2n+l)
r=l1

n 2 2
3 30 mHl)y
2=y

r=l

Note also: irl :(ir)2
r=1 r=1

These can be proved using Induction.

January 25, 2017

Use of Standard Formulae to find the sum of 3 series

2.1faisa constant, then sy X sy
PL/IN

Proof:
LHS
ofOrof D taf s - raft)

—alFaH@ + - HOS
-a ki KK) ~RHS

Use of Standard Formulae to find the sum of 3 series

The following formulae may be used to sum series. These are on your
exam papers.

1y, =2t
Proof:| HS
|+ 243+ - - - .1 (vx-\)*n

I RO Y] B SIS

G0+ ™l ,
- %[a-mﬂ = Ql{“*'] R - RHS

-

Use of Standard Formulae to find the sum of 3 series

Examples:

!\F\‘}D IO(IC’;‘Q =55

1. Evaluate i’ = g =
r=1

3 2/9 (3
1 T
2. Evaluate izr - ’lri:\r = 2("1("7"&: ( ?} =7=Q
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b o
Use of Standard Formulae to find the sum of 3 series 2 . 3
[y 2Lk oo L
Examples: 6 Z - :
) K=|
3. Evaluate S"¢-13) = Lo '{@ yR3t 243343

k=)
E=1 5] TS nz{n“)z 3 "‘(ﬁp
A(BLD +[3 = 21+B= 39 1 2 2
3
boso—
2{1010%9)‘]_ Tu(.%p ]

l b= 5385

M

5
4. Evaluate imf}) - ’LZF + 5(‘5)
—_ =

:2[5(5 +|)] s = 5]

2

Use of Standard Formulae to find the sum of 3 series

1. Find an expression for Zi’(ﬁ +1). giving your answer in fully factonised form.
=

Hence sum the series (1x2)+ (2x3)+ (3 x4) +(3x3)+ +(28x29)

(5]

Find an expression for 3 k(k + 3), giving your answer in fully factorised form
=

Hence sum the series (1x4)+ (2x5)+ (3% 6)+ (4« T)+ . +(35x38).



