Differentiate $f(x)=e^{\cos x} \sin ^{2} x$.
3

$$
\begin{aligned}
f^{\prime}(x) & =e^{\cos x}(2 \sin x \cos x)+\sin ^{2} x\left(-\sin x e^{\cos x}\right) \\
& =2 e^{\cos x} \sin x \cos x-e^{\cos x} \sin ^{3} x \\
& =e^{\cos x} \sin x\left(2 \cos x-\sin ^{2} x\right)
\end{aligned}
$$

(a) Given

$$
f(x)=\frac{x^{2}-1}{x^{2}+1}
$$

obtain $f^{\prime}(x)$ and simplify your answer.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(x^{2}+1\right)(2 x)-\left(x^{2}-1\right)(2 x)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{2 x^{3}+2 x-2 x^{2}+2 x}{\left(x^{2}+1\right)^{2}} \\
& =\frac{4 x}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

Given $f(x)=\sin x \cos ^{3} x$, obtain $f^{\prime}(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =(\sin x)\left(3 \cos ^{2} x(-\sin x)\right)+\cos ^{3} x(\cos x) \\
& =-3 \cos ^{2} x \sin ^{2} x+\cos ^{4} x \\
& =\cos ^{2} x\left(-3 \sin ^{2} x+\cos ^{2} x\right)
\end{aligned}
$$

Trigonometric Functions

```
    \operatorname{sin}\mp@subsup{x}{}{\circ}=\frac{0}{h}
    cos}\mp@subsup{x}{}{\circ}=\frac{a}{h
    tan}\mp@subsup{x}{}{\circ}=\frac{0}{a
\int\operatorname{sec}\mp@subsup{x}{}{\circ}=\frac{h}{a}=\frac{1}{\operatorname{cos}x}
cosec}\mp@subsup{x}{}{\circ}=\frac{h}{0}=\frac{1}{\operatorname{sin}x
\operatorname{cotan}\mp@subsup{x}{}{\circ}=\frac{a}{0}=\frac{1}{\operatorname{tan}x}
```


Differentiating Trigonometric Functions \qquad
Finding the derivative of $\tan x$
$\tan x=\frac{\sin x}{\cos x}$

$$
\begin{aligned}
& f(x)=\frac{\sin x}{\cos x} \\
& \begin{aligned}
& f^{\prime}(x)=\cos x(\cos x)-\sin x(-\sin x) \\
& \cos ^{2} x
\end{aligned} \\
& \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x
\end{aligned}
$$

Differentiating Trigonometric Functions

Finding the derivative of cosecx
$\operatorname{cosec} x=\frac{1}{\sin x}$

$$
\begin{aligned}
& f(x)=(\sin x)^{-1} \\
& \begin{aligned}
f^{\prime}(x) & =-1(\sin x)^{-2}(\cos x) \\
& =-\frac{\cos x}{\sin ^{2} x}
\end{aligned}=-\frac{\cos x}{\sin x} \cdot \frac{1}{\sin x} \\
&=-\frac{1}{\tan x} \cdot \operatorname{cosec} x \\
&=-\cot x \operatorname{cosec} x
\end{aligned}
$$

Differentiating Trigonometric Functions

$$
\begin{array}{ll}
f(x)=\sin a x & f(x)=\cos a x \\
f^{\prime}(x)=a \cos a x & f^{\prime}(x)=-a \sin a x
\end{array}
$$

Differentiating Trigonometric Functions
Finding the derivative of secx

$$
\sec x=\frac{1}{\cos x}
$$

$$
f(x)=\frac{1}{\cos x}=(\cos x)^{-1}
$$

$$
f^{\prime}(x)=-1(\cos x)^{-2}(-\sin x)
$$

$$
=\frac{\sin x}{\cos ^{2} x}=\tan x \cdot \frac{1}{\cos x}=\tan x \sec x
$$

Differentiating Trigonometric Functions
Finding the derivative of cotx

$$
\begin{aligned}
f(x) & =\frac{1}{\tan x}=\frac{\cos x}{\sin x} \\
f^{\prime}(x) & =\frac{\sin x(-\sin x)-\cos x(\cos x)}{\sin ^{2} x} \\
& =-\frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x}=\frac{-1\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin ^{2} x} \\
& =\frac{-1}{\sin ^{2} x}=-\operatorname{cosec}^{2} x
\end{aligned}
$$

Differentiating Trigonometric Functions
Examples: Differentiate the following

1. $y=\tan 3 x$

$$
d y / d x=3 \sec ^{2} 3 x
$$

Differentiating Trigonometric Functions
Examples: Differentiate the following
2. $y=\cot \left(x^{4}\right)$

$$
d y / d x=-4 x^{3} \operatorname{cosec}^{2}\left(x^{4}\right)
$$

Differentiating Trigonometric Functions
Examples: Differentiate the following
4. $y=\sec ^{2}(3 x-1)=(\sec (3 x-1))^{2}$

$$
\begin{aligned}
d y / d x & =2(\sec (3 x-1)) \cdot 3 \sec (3 x-1) \tan (3 x-1) \\
& =6 \sec ^{2}(3 x-1) \tan (3 x-1)
\end{aligned}
$$

Differentiating Trigonometric Functions
Examples: Differentiate the following
5. $y=x^{2} \sin x+8 \cos ^{2} 3 x=\underbrace{x^{2} \sin x}+\underbrace{8(\cos 3 x)^{2}}$
$d y / d x=x^{2}(\cos x)+\sin x \cdot(2 x)+16(\cos 3 x)-3 \sin 3 x$
$=x^{2} \cos x+2 x \sin x-48 \cos 3 x \sin 3 x$
$=x^{2} \cos x+2 x \sin x-24 \sin 6 x$$\rightarrow \begin{aligned} & \sin 2 A=2 \sin A \cos A \\ & \text { fram Higher }\end{aligned}$

Differentiating Trigonometric Functions
Examples: Differentiate the following
6. $y=\frac{\tan x}{x^{2}}$
$d y / d x=\frac{x^{2}\left(\sec ^{2} x\right)-\tan x \cdot(2 x)}{x^{4}}$
$=\frac{x^{2} \sec ^{2} x-2 x \tan x}{x^{4}}$
$x \sec ^{2} x-2 \tan k$

Differentiating Trigonometric Functions
Examples: Differentiate the following
$\begin{aligned} & \text { 7. } y=\ln (\tan x) \\ & d y / d x=\frac{1}{\tan x} \cdot \sec ^{2} x \\ &=\frac{1}{\tan x} \cdot \frac{1}{\cos ^{2} x} \\ &=\frac{1}{\frac{\sin x}{\cos x}} \cdot \frac{1}{\cos ^{2} x} \\ &=\frac{\cos x}{\sin x} \cdot \frac{1}{\cos ^{2} x}=\frac{1}{\sin x \cos x}\end{aligned}$

Differentiating Trigonometric Functions
Examples: Differentiate the following
8. $y=\sec x \tan x$

$$
\begin{aligned}
d y / d x & =\sec x\left(\sec ^{2} x\right)+\tan x(\sec x \tan x) \\
& =\sec ^{3} x+\sec x \tan ^{2} x \\
& =\sec x\left(\sec ^{2} x+\tan ^{2} x\right) \\
& =\sec x\left(\frac{1}{\cos ^{2} x}+\frac{\sin ^{2} x}{\cos ^{2} x}\right) \\
& =\sec x\left(\frac{1+\sin ^{2} x}{\cos ^{2} x}\right) \\
& =\sec x\left(\frac{1+\left(1-\cos ^{2} x\right)}{\cos ^{2} x}\right) \\
& =\sec x\left(\frac{2-\cos ^{2} x}{\cos ^{2} x}\right)=\sec x\left(\frac{2}{\cos ^{2} x}-\frac{\cos ^{2} x}{\cos ^{2} x}\right) \\
& =\sec x\left(2 \sec ^{2} x-1\right)
\end{aligned}
$$

