Daily Practice

22.6.2017

Q1. Solve $18 \mathrm{x}-5=13 \mathrm{x}+30 \quad$ Non-Calculator!

Q2. State the area of a circle with a diameter of 20 cm , use $\pi=3.14$

Q3. Write 5.6×10^{-3} in normal form

Q4. Share $£ 252$ in the ratio $\mathbf{3 : 2}$

Q5. Calculate the speed a car is travelling at if it can travel 125 km in 1 hour and 15 minutes

Labelling Sides in a Right-Angled Triangle
The Hypotenuse is the longest side and is always opposite the right angle.

Daily Practice Non-Cale.
23.6.2017

Q1. Rearrange the formula $V=\pi r^{2} h$ so that r is the subject

Q2. 400 bars of soap cost $£ 40$, how much would 7 cost?

Q3. State the equation of the line joining ($-3,2$) and $(0,4)$

Q4. Solve for $\mathrm{x} \quad 5 \mathrm{x}-1=2 \mathrm{x}+14$

Q5. Write 18 out of 30 as a percentage

Today we will be continuing to learn about trigonometric ratios.
\qquad

[^0]

Trigonometric Ratios
For every possible acute angle in a triangle, there is a given ratio for the sides opposite and adjacent to it.

These ratios are known as $\operatorname{Sin}, \operatorname{Cos}$ and Tan.

Write down the \sin , \cos and tan for x in each
(a)

(b)

(d)

(e)

(f)

$\mathscr{D}_{\text {aily }} \mathscr{P}_{\text {rackice }}$
16.8.2017

Q1. Find 18% of 200
18% of $100=18$ $18 \times 2=36$
Q2. Round 71.2278 to 1 decimal place
$71 \cdot 2$
Q3. Multiply out and simplify $3(x+4)+2(2 x-8)$

$$
\begin{gathered}
3 x+12+4 x-16 \\
7 x-4
\end{gathered}
$$

O4. Write 16 out of 48 as a percentage

$$
\frac{16}{48}=\frac{1}{3}=33 \frac{1}{3} \%
$$

Q5. Calculate the time it takes Harry to drive 180km if he drives at $80 \mathrm{kmph} T=\frac{D}{S}=\frac{180}{80}=2.25=2 \mathrm{hrs} 15 \mathrm{mins}$

$$
\operatorname{Sin} x^{\circ}=\frac{\text { opp. }}{\text { hyp. }} \operatorname{Cos} x^{\circ}=\frac{\operatorname{adj}}{\text { hyp. }} \quad \operatorname{Tan} x^{\circ}=\frac{\text { opp }}{\text { adj. }}
$$

SOH CAH TOA

Right - Angled Trigonometry

Example 2: Write down \sin , \cos and \tan for the angle x°

$$
\begin{aligned}
& \sin x^{\circ}=\frac{28}{53} \\
& \cos x^{\circ}=\frac{45}{53} \\
& \tan x^{\circ}=\frac{28}{45}
\end{aligned}
$$

Example 1: Write down \sin , \cos and \tan for the angle x°
$\sin x^{\circ}=\frac{0}{h}=\frac{3}{5}$ or 0.6
$\cos x^{\circ}=\frac{a}{h}=\frac{4}{5}$ or 0.8
$\operatorname{Tan} x^{\circ}=\frac{\circ}{a}=\frac{3}{4}$ or 0.75

Recognising Ratios on Right Angled Triangles
What ratio can I find in this triangle?

$$
\cos x^{\circ}=\frac{8}{12}=\frac{2}{3}
$$

Finding the angle given the ratio
If we know the ratio for a given angle, we can find the angle.

Examples: Find x^{0}, given $z_{x}=\tan ^{-1}(1.5)=56.3^{\circ}$ (ld.p.)
(a) $\cos x^{0}=0.8$
(b) $\tan x^{\circ}=1.5^{5}$
(c) $\sin x^{\circ}=0.88$
$x=\sin ^{-1}(0.88)=61.6^{\circ}$

$\quad(\mid d . p)$
$x^{\circ}=\cos ^{-1}(0.8)=36.9^{\circ}(1$ d.p. $)$
(d) $\cos x^{\circ}=\frac{3}{4}$ $x=\cos ^{-1}\left(\frac{3}{4}\right)=41.4^{\circ}(1$ d.p. $)$

Recognising Ratios on Right Angled Triangles
What ratio can I find in this triangle?

$$
\tan x^{\circ}=\frac{15.5}{23.5}
$$

Questions: Find x^{0} (to the nearest unit), given
(a) $\cos x^{0}=0.65$
(b) $\tan x^{\circ}=2.3$
(c) $\sin x^{0}=0.2$
(d) $\sin x^{0}=0.75$
(e) $\tan x^{\circ}=4.88$
(f) $\cos x^{\circ}=0.55$
(g) $\tan x^{0}=1$
(h) $\cos x^{0}=0.86$
(i) $\sin x^{\circ}=0.45$
(j) $\sin x^{\circ}=\frac{32}{65}$
(k) $\cos x^{\circ}=\frac{107}{1120}$
(1) $\tan x^{\circ}=\frac{83}{29}$

Oaily Wractice
17.8.2017

Q1. Find 28% of 7000 Q1. Find 28% of $7000 \quad \times 700 \quad \times 70$
10% of $7000=700 \quad 1960$
1%. $\quad \cdots=70 \quad 1960$
Q2. Calculate the size of x
$x^{2}=8.93^{2}-5.25^{2}$ $x^{2}=8.93-5.25$
$x^{2}=52.1894$

Q3. How far does Tim $x=\sqrt{52.1824}-\frac{7.22}{} \mathrm{~cm}$ (2d.p.) . hour and 45 minutes

$$
D=S \times T=54 \times 1.75=\underline{94.5 \text { miles }}
$$

Q4. Share $£ 240$ in the ratio $1: 41+4=5$
$5 \longdiv { 2 4 8 } \frac { x ^ { 4 8 } } { 1 2 }$
Q5. Solve for $x, 2(x+5)=3(x+17)$
$2 x+10=3 x+51$
$10=x+51$
$-41=x$
$x=-41$

Today we will be continuing to use $\operatorname{Sin}, \operatorname{Cos}$ and Tan ratios to find missing angles in triangles.

Finding the angle
Examples:

1. (i) Which ratio can we find? $\operatorname{Tan} x^{\circ}$
(ii) Find the value of x

$$
\begin{aligned}
& \operatorname{Tan} x^{\circ}=\frac{0}{a}=\frac{6.7}{5.5} \\
& x=\tan \left(\frac{6.7}{5.5}\right) \\
& x=50.6^{\circ} \quad(1 d . p .)
\end{aligned}
$$

Finding the angle
Examples:
2. Find the value of x
$\operatorname{Sin} x^{\circ}=\frac{0}{h}=\frac{8}{15}$

$x=\sin ^{-1}\left(\frac{8}{15}\right)=32 \cdot 2^{\circ}$

Finding the andle

(a)

(b)

(c)

(e)
en
(f)

Daily Practice \qquad 18.8.2017

Q1. Round 71.882 to 2 decimal places

$$
\rightarrow 71.88
$$

Q2. Find 2% of 850
$850 \div 100=8.5$
$85 \times 2=17$
Q3. Solve $3-3 x=18+2 x$
$3-5 x=18$
$\begin{aligned} 3-5 x & =18 \\ -5 x & =15\end{aligned}$
Q4. What is the value of x ?
$\cos x^{\circ}=\frac{9}{13} \quad x=\cos ^{-1}\left(\frac{9}{13}\right)=\frac{46 \cdot 19^{\circ}}{=}(2 d p) \mathrm{cm}$

Q5. Write down the value of $3 a^{2}$ when $a=-1$ $3 \times(-1)^{2}=3 \times 1=3$

Finding the angle in context
James has designed a ramp into a house. It is 4.5 m long and has a slope of 4.8 m . To pass inspection, it needs to have an angle of elevation less than 20°.
Will it pass inspection?
$\cos x^{\circ}=\frac{4.5}{4.8}$

$$
x=20.4^{\circ}(1 \text { d.p. })
$$

No, because $20.4^{\circ}>20^{\circ}$

Today we will be learning how to find a missing side in a right - angled triangle using trig. ratios.

1. An aircraft making a steady descent
decreases height by 2.16 km in 18.41 k What is the angle of descent. x° ?

2. Find angle x in this isosceles triangle

$$
\begin{aligned}
\sin m^{\circ} & =\frac{39}{81} \\
m & =\sin ^{-1}\left(\frac{39}{81}\right)=28.8^{\circ}(1 d \cdot p .) \\
x & =28.8^{\circ} \times 2=57.6^{\circ}
\end{aligned}
$$

3. A manufacturer of concrete roof tiles states that to be suitable for concrete tiles the angle of a roof (pitch) must be greater than 21°.
This roof is symmetrical. Is this roof suitable for concrete tiles?

$\operatorname{Tan}^{\circ}=\frac{940}{2524} \quad x=\tan ^{-1}\left(\frac{940}{2524}\right)=20.43^{\circ} \mathrm{S} 0.48$ (2d.p.) $20.43^{\circ} \mathrm{L} 21^{\circ}$, therefore it is ${ }^{\text {not }} 1^{\text {sutable }}$

Finding the length of a missing side
Given an angle and 1 side in a right - angled triangle, you can find the lengths of the other sides using trig. ratios.

Examples:

1. Find the length of x

$\sin x^{\circ}=\frac{o}{h}$
$\operatorname{Tan} x^{\circ}=\frac{0}{a}$
$\sin 57^{\circ}=\frac{x}{14}$
$14 \sin 57^{\circ}=x$

$$
x=11.74 \mathrm{~cm}
$$

2. Find the value of p
$\operatorname{Ton} 48^{\circ}=\frac{1}{15.1}$
$15.1 \tan 48^{\circ}=p$

$$
p=16.8 \mathrm{~cm}(1 \mathrm{~d} . \mathrm{p} .)
$$

4. The angle of approach, x°, of a plane P as it comes in to land should be between 3° and 5° with the horizontal. The air traffic controller has to tell the pilot whether he is too high, too low or on the correct "glide path"

An incoming plane is 3000 m away from its landing
point A and is at a height of 160 m as shown in the diagram.
Is the plane too high, too low or on the correct "glide path"?
5. A firefighter has a 12 metre ladder and needs to reach a window 10 metres from the ground.

What angle, x°, will the ladder make with the building?

Finding the length of a side

3. Find the value of h

$$
\cos 17^{\circ}=\frac{24}{h}
$$

$h \operatorname{Cos} 17^{\circ}=24$
$h=\frac{24}{\cos 17^{\circ}}=25 \cdot 1 \mathrm{~cm}$

Daily Practice
21.8.2017

Q1. Find 25% of 900
$\frac{225}{4 \longdiv { 9 0 0 }}$
Q2. Multiply out and simplify $2 x(3 x-1)+4 x(x-8)$

$$
\begin{aligned}
& x(3 x-1)+4 x(x-8) \\
& 6 x^{2}-2 x+4 x^{2}-32 x
\end{aligned}
$$

$10 x^{2}-34 x$
Q3. Write as a unitary ratio $\left.\begin{array}{r}1 / 5: 4 \\ \times 5=1: 20\end{array}\right)$
Q4. Round 67.224 to the nearest unit

$$
\rightarrow 67
$$

Q5. Write 1 hour and 6 minutes as a decimal of hours

$$
\frac{6}{60}=0.1 \quad \text { 1. Thours }
$$

Today we will be working out trigonometry

 questions in context.Homework Online due Monday 28.8.2017

Today we will be continuing to practise mixed questions on trigonometry.

Trigonometric Ratio Questions in context
Examples:
${ }^{1 .}{ }_{T}$
diagram shows a tower, height h.
From a distance of 14 metres from the base of the tower, the angle of elevation to the top of the tower is 44 .

Calculate the height of the tower

$$
\operatorname{Tan} x^{\circ}=\frac{0}{a}
$$

$$
\operatorname{Tan} 44^{\circ}=\frac{h}{14}
$$

$$
14 \tan 44^{\circ}=h
$$

$$
h=13.5 \mathrm{~m} \quad(1 \text { d.p. })
$$

Daily Practice
23.8.2017

Q1. Multiply out and simplify $7(2 x-8)+3(x+4)$
$14 x-56+3 x+12$
$17 x-44$
Q2. Factorise $8 h-12=4(2 h-3)$
Q3. Rearrange $y=m x+c$ such that ' x ' is the subject
$-c \left\lvert\, c=m x^{-c} \quad x=\frac{y-c}{m} \quad\right.$ or $x=(y-c) \div m$
Q4. Share $£ 200$ in the ratio $4: 1 \quad 4+1=5$

Q5. Write the rule for the table shown

$D=2 C-1$

Trigonometric Ratio Questions in context
Examples:
Page $133+134$
3. A plane (P) flies at a bearing of 132° for 300 km from the airport (A).
which is diractly south of A
It is now due east of the city of Bemenkg how far is the plane from Bemenko?

$$
\begin{aligned}
& \sin 48^{\circ}=\frac{x}{300} \\
& x=300 \sin 48^{\circ} \\
& x=222.94 \mathrm{~km}(2 \text { d.p })
\end{aligned}
$$

Daily Practice

Q1. Round 182362 to 3 significant figures
$\rightarrow 182000$

Q2. Find $4 / 5$ of 264
$\begin{array}{r}52.8 \quad 52.8 \\ \times \quad 4 \\ \hline\end{array}$
Q3. Multiply out and simplify $3 m-2(m+6)$
$3 m-2 m-12$
Q4. $1 \frac{3}{5} \div \frac{4}{7}=\frac{8}{5} \div \frac{4}{7}=\frac{8}{5} \times \frac{7}{4} \quad \frac{m-12}{\frac{05}{05}}$. Factorise $4 x y-8 y$

$$
=\frac{56}{20}=2 \frac{16}{20}=2 \frac{4}{5} \quad-4 y(x-2)
$$

[^0]: Trigonometric Ratios
 $\operatorname{Sin} x^{\circ}$
 $\operatorname{Cos} x^{\circ}$
 $\operatorname{Tan} x^{\circ}$
 $\cos x^{\circ}$

