Daily Practice \qquad 22.2.2016

Q1. Multiply out and simplify $(3 x-2)\left(x^{2}-7 x+3\right)$

$$
3 x^{3}-21 x^{2}+9 x-2 x^{2}+14 x-6
$$

$$
3 x^{3}-23 x^{2}+23 x-6
$$

Q2. Factorise fully $3 x^{2}-75$

$$
\begin{aligned}
& 3\left(x^{2}-25\right) \\
& 3(x+5)(x-5)
\end{aligned}
$$

Q3. Calculate the value of a house worth $£ 148000$ that appreciated by 3.5% per annum for 3 years $100 \%+3 \cdot 5 \%=103 \cdot 5!$

$$
148000 \times 1.035^{3}=f 164090.25
$$

Q4. Calculate the area of an eighth of a circle with diameter 14 cm

$$
A=\frac{\pi r^{2}}{8}=\frac{\pi x 7^{2}}{8}=19.24 \mathrm{~cm}^{2} \quad(2 \text { d.p. })
$$

Volume of a prism
22.2 .16

> a 3D shape with the same cross-section the whole way through it. Eg. Triongulor prism . cuboid, cylinder. pentagonal prism etc.

Volume of a Prism $=$ Area Cross - Section x Height

Volume of a prism

Use your knowledge of volume of prisms to state the formula for the volume of the following objects.

L.I: Today we will be revising how to find the volume of a prism.
S.C: We will be able to find the volume of prisms and be able to calculate the height or radius given the volume.

Volume of a prism

The volume of a prism $=$ Area of Cross Section \times Length

Example: $\begin{aligned} & \text { Jim Reid keeps his washing in a basket. The basket is in the shape of a } \\ & \text { prism. }\end{aligned}$

The height of the basket is 50 centimetres.

Find the volume of the basket in cubic centimetres.
Give your answer correct to throes significant figures.
Volume $=$ Area cross - section x height

$$
\begin{aligned}
& =\left(L \times B+\pi r^{2}\right) \times 50 \\
& =\left((24 \times 30)+\left(\pi \times 12^{2}\right)\right) \times 50 \\
& =(720+452.39) \times 50 \\
& =1172.39 \times 50 \\
& =58619.5 \mathrm{~cm}^{3} \rightarrow 58600 \mathrm{~cm}^{3}
\end{aligned}
$$

Daily Practice 23.2.16

Q1. Multiply out and simplify $(2 x+3)\left(x^{2}+7 x+4\right)$

$$
\begin{aligned}
& y(2 x+3)\left(x^{2}+7 x+4\right) \\
& 2 x^{3}+14 x^{2}+8 x+3 x^{2}+21 x+12
\end{aligned}
$$

$$
2 x^{3}+17 x^{2}+29 x+12
$$

Q2. Simplify $x^{3}\left(x^{-5}+2 x^{-3}\right)$

$$
\begin{aligned}
& x^{3}\left(x^{-5}+2 x^{-3}\right) \\
& x^{-2}+2 x^{0} \\
& x^{-2}+2
\end{aligned}=\frac{1}{x^{2}}+2 \quad \frac{x^{5}}{x^{5}}=1 \quad \frac{x^{5}}{x^{5}}=x^{0}
$$

Q3. Find the value of a house that was purchased for $£ 165000$ and depreciated in value by 3% in its first year and appreciated in value by 4.5% in its second $\quad 165000 \times 0.97=£ 160050$ $160050 \times 1.045=f 167252.25$
Q4. $2 \frac{1}{3}-\frac{3}{4}=\frac{7}{3}-\frac{3}{4}$

$$
\frac{28}{12}-\frac{9}{12}
$$

Q5. Factorise $x^{2}+4 x-12$ $=\frac{19}{12}=1 \frac{7}{12}$

Volume of a prism

Today we will be continuing to work out the volume of prisms.

Volume of a prism

Volume of a prism $\quad \square$

$$
\begin{aligned}
& \text { Area cross-section } \times \text { height } \\
& \left.\left[(27 \times 16)+\left(\pi \times 13.5^{2}\right) \div 2\right)\right] \times 10 \\
& {[432+286 \cdot 3] \times 10=7183 \mathrm{~cm}^{3}}
\end{aligned}
$$

Daily Practice

Q1. Calculate the volume of a cylinder with diameter 16 cm and height 24 cm

$$
V=\pi r^{2} h
$$

$$
\begin{aligned}
& V=\pi r^{2} h \\
& V=\pi \times 8^{2} \times 24=4825.49 \mathrm{~cm}^{3} \quad(2 \text { dip. })
\end{aligned}
$$

Q2. Multiply out and simplify $(2 x-1)(4+x)$

$$
8 x+2 x^{2}-4-x
$$

$$
2 x^{2}+7 x-4
$$

Q3. Calculate the angle at the centre of this sector, given that the area is
$56 \mathrm{~cm}^{2}$

Daily Practice
24.2.16

Q1. Write 6 million in scientific notation

$$
6 \times 10^{6}
$$

Q2. Multiply out and simplify $(3 x-1)^{2}$

$$
9 x^{2}-6 x+1
$$

Q3. Factorise $16-y^{2}$
Q4. Calculate
$(4+y)(4-y)$
the arc length of the shaded sector Arclength

$$
\begin{aligned}
& =\frac{x}{360} \times \pi \\
& =\frac{255}{360} \times \pi \times 24 \\
& =53.4 \mathrm{~cm}
\end{aligned}
$$

L.I: Today we will be learning how to find the volume of a pyramid and a cone.
S.C: We will be able to find the volume of a pyramid and a cone.

Volume of a pyramid

This cube has been divided into 6 equal square based pyramids.

$V=L \times B \times H$
$V=\frac{L \times B \times H}{6}$
$V=\frac{L \times B \times 2 h}{6} \div 2$
$V=\frac{L \times B \times h}{3}$ $V=\frac{1}{3} L \times B \times h$
$V=\frac{1}{3} \times$ Area base $\times h$

Volume of a pyramid

Examples:

1. Find the volume of a pyramid with a square base with sides of length 6 cm and a height of 10 cm

$$
\begin{aligned}
& V=\frac{1}{3}(6 \times 6) \times 10 \\
& V=\frac{1}{3}(36) \times 10=120 \mathrm{~cm}^{3}
\end{aligned}
$$

2. Find the volume of the triagule based

$$
V=\frac{1}{3}\left(\frac{\left.\frac{1}{2} \times 11 \times 10\right)}{\text { Areabasc }} \times 12\right.
$$

$$
V=\frac{1}{3} \times 55 \times 12=220 \mathrm{~cm}^{3}
$$

> Daily Practice
\qquad 29.2.16

Q1. Calculate the volume of a cone with diameter 12 cm and height 19 cm .3 $V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \pi \times 6^{2} \times 19=716.283 \rightarrow 716.3 \mathrm{~cm}^{3}$ Q2. Find the value of a house that was worth $£ 120000$ and appreciated by 5.2% per annum for 4 years. $100 \%+5.2 \%=105.2 \%=1.052$

Volume of a pyramid
Questions:

1. A pyramid has a square base of side 7 cm and a height of 13 cm . Calculate the volume to 2 s.f.
2. A pyramid has a rectangular base measuring 15 mm by 14 mm and a vertical height of 10 mm . Calculate the volume.
3. Calculate the volume of the pyramids shown

*(c) $\bigwedge_{4 \mathrm{~cm}}^{\left.4 \mathrm{Aqm}_{4}\right\rangle\left._{4 \mathrm{~cm}}\right|_{7 \mathrm{~cm}}}$
(d)

(e)

(f)

L.I: Today we will be learning how to find the volume of a pyramid and a cone.
S.C: We will be able to find the volume of a pyramid and a cone.
L.I: Today we will be learning how to find the volume of a cone and working backwards.
Homework online due 7.3.16

Volume of Cones: Examples

1. Calculate the volume of this cone given the slant height is 8 cm and the radius is 3 cm
$V=\frac{1}{3} \pi r^{2} \times h$
$V=\frac{1}{3} \times 7 \times 3^{2} \times 7.42=69.93 \mathrm{~m}^{3}(2 \mathrm{dp}$.
2. Calculate the radius given that the
volume $=658 \mathrm{~cm}^{3}$

$$
6 \mathrm{~cm}
$$

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
658 & =\frac{1}{3} \times \pi \times r^{2} \times 6 \\
\div \frac{1}{3} \pi \times 6 \quad & \div \frac{1}{3} \pi \times 6 \\
\frac{658}{6.28} & =r^{2} \\
r^{2} & =104.72 \\
r & =\sqrt{104.72}=10.23 \mathrm{~cm}(2 \text { d.p. })
\end{aligned}
$$

Today we will be continuing to practise questions on the volume of cylinder and cone.

Homework due Monday.

Calculate the missing value for each of the following:

$$
\begin{aligned}
& h^{2}=8^{2}-3^{2}=55 \\
& h=\sqrt{55}=7.42 \mathrm{~m}(2 \mathrm{~d} . \mathrm{p})
\end{aligned}
$$

1.3 .2016

Q1. Calculate the height of a cylinder that has a volume of $540 \mathrm{~cm}^{3}$ and a radius of 4.5 cm (Give your answer to 1 s.f.)

$$
\begin{array}{ll}
V=\pi r^{2} h & h=\frac{540}{\pi \times 4.5^{2}} \\
540=\pi \times 4.5^{2} \times h &
\end{array}
$$ $\underset{\substack{\pi \times 4.5^{2}}}{ } \rightarrow 8 \mathrm{~cm}$ (1sf)

Q2. Multiply out and simplify $(2 x-1)\left(x^{3}+5 x-4\right)$

$$
2 x^{4}+10 x^{2}-8 x-x^{3}-5 x+4
$$

$$
2 x^{4}-x^{3}+10 x^{2}-13 x+4
$$

Q3. State the equation of the line joining $(-2,3)$ and $(0,1)$
Q4. Factorise $3 x^{2}-14 x+8 \quad \frac{x_{2}-x_{1}}{0-(-2)}=\frac{2}{2}=\frac{-1}{=} \quad y=-x+1$

Diagram NOT
accurately drawn accurately drawn

A frustum is made by removing a small cone from a similar large cone
The height of the small cone is 20 cm .
The height of the large cone is 40 cm .
The diameter of the base of the large cone is 30 cm .
Work out the volume of the frustum.
Give your answer correct to 3 significant figures.

A container to hold chocolates is in the
shape of part of a cone with dimensions as shown below.

Calculate the volume of the container. Give your answer correct to one significant figure.

A drinks container is in the shape of a cylinder with radius 20 centimetres and height 50 centimetres.
(a) Calculate the volume of the drinks container.
Give your answer in cubic centimetres, correct to two significant figures.

(b) Liquid from the full container can fill 800 cups, in the shape of cones, each of radius 3 centimetres.

What will be the height of liquid in each cup?

The diagram shows a cone.

The height is 12 centimetres and the radius of the base 10 centimetres. Calculate the volume of the cone.
Take $\boldsymbol{\pi}=\mathbf{3 \cdot 1 4}$.

Both the cone and the tub of ice cream cost the same.
Which container of ice cream is better value for money?

Give a reason for your answer.

A glass ornament in the shape of a cone is partly filled with coloured water

The cone is 24 centimetres high and has a base of diameter 30 centimetres. The water is 16 centimetres deep and measures 10 centimetres across the top.
What is the volume of the water?
Give your answer correct to 2 significant figures.

Daily Practice $2 \cdot 3.16$

Q1. Round 814403 to 2 significant figures

Q2. Multiply out and simplify $(2 x-1)\left(x^{2}-3 x-4\right)$

Q3. Factorise fully $50 x^{2}-8$

Q4. Calculate the length of an arc that has angle at centre 15° and radius 28 cm
L.I: Today we will be learning how to calculate the volume of a sphere and volume problem solving questions.

S.C: We understand the formula for the volume of a

 sphere and can apply it to questions containing spheres and hemispheres.Homework Online due 7.3.16

Volume of a sphere

Examples:

1. Calculate the volume of a sphere with diameter 8 cm

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
& V=\frac{4}{3} \times \pi \times 4^{3}=268,08 \mathrm{~cm}^{3}
\end{aligned}
$$

2. Calculate the volume of a hemisphere with radius 7 cm

$$
V=\frac{4}{3} \pi r^{3} \div 2
$$

$$
V=\frac{4}{3} \times \pi \times 7^{3} \div 2
$$

$$
V=718.38 \mathrm{~cm}^{3}
$$

Volume of a sphere
The volume of a sphere is found using Integration, a type of Maths in the Higher Course. You will be given the formula in your exam.

Volume of a sphere
3. Calculate the radius of this sphere given the volume is $780 \mathrm{~cm}^{3}$

